989 resultados para 347.077
Resumo:
What role can climatically appropriate subdivision design play in decreasing the use of energy required to cool premises by maximising access to natural ventilation? How can this design be achieved? The subdivision design stage is critical to urban and suburban sustainability outcomes, as significant changes after development are constrained by the configuration of the subdivision, and then by the construction of the dwellings. Existing Australian lot rating methodologies for energy efficiency, such as that by the Sustainable Energy Development Authority (SEDA), focus on reducing heating needs by increasing solar access, a key need in Australia’s temperate zone. A recent CRC CI project, Sustainable Subdivisions: Energy (Miller and Ambrose 2005) examined these guidelines to see if they could be adapted for use in subtropical South East Queensland (SEQ). Correlating the lot ratings with dwelling ratings, the project found that the SEDA guidelines would need to be modified for use to make allowance for natural ventilation. In SEQ, solar access for heating is less important than access to natural ventilation, and there is a need to reduce energy used to cool dwellings. In Queensland, the incidence of residential air-conditioning was predicted to reach 50 per cent by the end of 2005 (Mickel 2004). The CRC-CI, Sustainable Subdivisions: Ventilation Project (CRC-CI, in progress), aims to verify and quantify the role natural ventilation has in cooling residences in subtropical climates and develop a lot rating methodology for SEQ. This paper reviews results from an industry workshop that explored the current attitudes and methodologies used by a range of professionals involved in subdivision design and development in SEQ. Analysis of the workshop reveals that a key challenge for sustainability is that land development in subtropical SEQ is commonly a separate process from house design and siting. Finally, the paper highlights some of the issues that regulators and industry face in adopting a lot rating methodology for subdivisions offering improved ventilation access, including continuing disagreement between professionals over the desirability of rating tools.
Resumo:
With the application of GIS methodologies to spatial data, researchers can now identify patterns of occurrence for many social problems including health-issues and crime. Further more, since this type of data also contains clues as to the underlying causes of social problems, it can be used to make well-educated and consequently, more effective policy decisions.
Resumo:
This paper presents a detailed description of the influence of critical parameters that govern the vulnerability of columns under lateral impact loads. Numerical simulations are conducted by using the Finite Element program LS-DYNA, incorporating steel reinforcement, material models and strain rate effects. A simplified method based on impact pulse generated from full scale impact tests is used for impact reconstruction and effects of the various pulse loading parameters are investigated under low to medium velocity impacts. A constitutive material model which can simulate failures under tri-axial state of stresses is used for concrete. Confinement effects are also introduced to the numerical simulation and columns of Grade 30 to 50 concrete under pure axial loading are analysed in detail. This research confirmed that the vulnerability of the axially loaded columns can be mitigated by reducing the slenderness ratio and concrete grade, and by choosing the design option with a minimal amount of longitudinal steel. Additionally, it is evident that approximately a 50% increase in impact capacity can be gained for columns in medium rise buildings by enhancing the confinement effects alone. Results also indicated that the ductility as well as the mode of failure under impact can be changed with the volumetric ratio of lateral steel. Moreover, to increase the impact capacity of the vulnerable columns, a higher confining stress is required. The general provisions of current design codes do not sufficiently cover this aspect and hence this research will provide additional guidelines to overcome the inadequacies of code provisions.
Resumo:
Principal Topic High technology consumer products such as notebooks, digital cameras and DVD players are not introduced into a vacuum. Consumer experience with related earlier generation technologies, such as PCs, film cameras and VCRs, and the installed base of these products strongly impacts the market diffusion of the new generation products. Yet technology substitution has received only sparse attention in the diffusion of innovation literature. Research for consumer durables has been dominated by studies of (first purchase) adoption (c.f. Bass 1969) which do not explicitly consider the presence of an existing product/technology. More recently, considerable attention has also been given to replacement purchases (c.f. Kamakura and Balasubramanian 1987). Only a handful of papers explicitly deal with the diffusion of technology/product substitutes (e.g. Norton and Bass, 1987: Bass and Bass, 2004). They propose diffusion-type aggregate-level sales models that are used to forecast the overall sales for successive generations. Lacking household data, these aggregate models are unable to give insights into the decisions by individual households - whether to adopt generation II, and if so, when and why. This paper makes two contributions. It is the first large-scale empirical study that collects household data for successive generations of technologies in an effort to understand the drivers of adoption. Second, in comparision to traditional analysis that evaluates technology substitution as an ''adoption of innovation'' type process, we propose that from a consumer's perspective, technology substitution combines elements of both adoption (adopting the new generation technology) and replacement (replacing the generation I product with generation II). Based on this proposition, we develop and test a number of hypotheses. Methodology/Key Propositions In some cases, successive generations are clear ''substitutes'' for the earlier generation, in that they have almost identical functionality. For example, successive generations of PCs Pentium I to II to III or flat screen TV substituting for colour TV. More commonly, however, the new technology (generation II) is a ''partial substitute'' for existing technology (generation I). For example, digital cameras substitute for film-based cameras in the sense that they perform the same core function of taking photographs. They have some additional attributes of easier copying and sharing of images. However, the attribute of image quality is inferior. In cases of partial substitution, some consumers will purchase generation II products as substitutes for their generation I product, while other consumers will purchase generation II products as additional products to be used as well as their generation I product. We propose that substitute generation II purchases combine elements of both adoption and replacement, but additional generation II purchases are solely adoption-driven process. Extensive research on innovation adoption has consistently shown consumer innovativeness is the most important consumer characteristic that drives adoption timing (Goldsmith et al. 1995; Gielens and Steenkamp 2007). Hence, we expect consumer innovativeness also to influence both additional and substitute generation II purchases. Hypothesis 1a) More innovative households will make additional generation II purchases earlier. 1 b) More innovative households will make substitute generation II purchases earlier. 1 c) Consumer innovativeness will have a stronger impact on additional generation II purchases than on substitute generation II purchases. As outlined above, substitute generation II purchases act, in part like a replacement purchase for the generation I product. Prior research (Bayus 1991; Grewal et al 2004) identified product age as the most dominant factor influencing replacements. Hence, we hypothesise that: Hypothesis 2: Households with older generation I products will make substitute generation II purchases earlier. Our survey of 8,077 households investigates their adoption of two new generation products: notebooks as a technology change to PCs, and DVD players as a technology shift from VCRs. We employ Cox hazard modelling to study factors influencing the timing of a household's adoption of generation II products. We determine whether this is an additional or substitute purchase by asking whether the generation I product is still used. A separate hazard model is conducted for additional and substitute purchases. Consumer Innovativeness is measured as domain innovativeness adapted from the scales of Goldsmith and Hofacker (1991) and Flynn et al. (1996). The age of the generation I product is calculated based on the most recent household purchase of that product. Control variables include age, size and income of household, and age and education of primary decision-maker. Results and Implications Our preliminary results confirm both our hypotheses. Consumer innovativeness has a strong influence on both additional purchases (exp = 1.11) and substitute purchases (exp = 1.09). Exp is interpreted as the increased probability of purchase for an increase of 1.0 on a 7-point innovativeness scale. Also consistent with our hypotheses, the age of the generation I product has a dramatic influence for substitute purchases of VCR/DVD (exp = 2.92) and a strong influence for PCs/notebooks (exp = 1.30). Exp is interpreted as the increased probability of purchase for an increase of 10 years in the age of the generation I product. Yet, also as hypothesised, there was no influence on additional purchases. The results lead to two key implications. First, there is a clear distinction between additional and substitute purchases of generation II products, each with different drivers. Treating these as a single process will mask the true drivers of adoption. For substitute purchases, product age is a key driver. Hence, implications for marketers of high technology products can utilise data on generation I product age (e.g. from warranty or loyalty programs) to target customers who are more likely to make a purchase.
Resumo:
This project, as part of a broader Sustainable Sub-divisions research agenda, addresses the role of natural ventilation in reducing the use of energy required to cool dwellings
Resumo:
The objective of the consultative phase is to examine the role that natural ventilation has and can play in the subdivision planning process in SEQ. The Centre for Subtropical Design at QUT coordinated the consultative phase and has conducted a workshop, and interviews, with stakeholders including developers, land development consultants, land surveyors, urban designers and regulators, to identify current understanding of the impact of urban subdivision on natural ventilation, and the role of natural ventilation in achieving energy efficiency for dwellings. This report details the findings.
Resumo:
Australia’s current pattern of residential development is typified by relatively low-density subdivision of land and highlights the necessity for development to be more sustainable to avoid unnecessary demand on natural resources and to prevent environmental degradation and to safeguard the environment for future generations. What role can climatically appropriate sub-division design play in decreasing the use of energy required to cool premises by maximising access to natural ventilation? How can this design be achieved?
Resumo:
This is the third in a series of reports planned for this project. The aim of this research is to conduct a comparative study of current legislation or guidelines at the federal, state and local government levels to confirm if any natural ventilation criteria are required at the subdivision development stage of planning. It also seeks to discover if there are any other incentives, statutory planning or development principles that encourage developers to orient subdivision lots to maximize natural ventilation for the dwellings. Findings from the research in this report are intended to contribute to the discussion on the development of an enhanced lot rating methodology for sustainable subdivisions as documented in other reports in this series.
Resumo:
This paper will summarise the findings from a study that explored the link between dwelling design, or type, and energy efficiencies in sub-tropical climates. An increasing number of government and private sector development companies are initiating projects that aim to deliver enhanced environmental outcomes at both sub-divisional and dwelling levels. The study used AccuRate, a new thermal modelling tool developed by CSIRO that responds to the need to improve ventilation modelling. The study found that dwellings developed in conjunction with the Departments of Housing and Public Works have set the benchmark. It provides a snapshot of the energy efficiency of a range of dwelling types found in recent subdivisions. However, the trend toward increasing urban densities may reduce the likelihood that cooling breezes will be available to cool dwellings. The findings are relevant to regulators, designers and industry in all states interested in reducing the energy used to cool dwellings in summer.
Resumo:
The challenges of maintaining a building such as the Sydney Opera House are immense and are dependent upon a vast array of information. The value of information can be enhanced by its currency, accessibility and the ability to correlate data sets (integration of information sources). A building information model correlated to various information sources related to the facility is used as definition for a digital facility model. Such a digital facility model would give transparent and an integrated access to an array of datasets and obviously would support Facility Management processes. In order to construct such a digital facility model, two state-of-the-art Information and Communication technologies are considered: an internationally standardized building information model called the Industry Foundation Classes (IFC) and a variety of advanced communication and integration technologies often referred to as the Semantic Web such as the Resource Description Framework (RDF) and the Web Ontology Language (OWL). This paper reports on some technical aspects for developing a digital facility model focusing on Sydney Opera House. The proposed digital facility model enables IFC data to participate in an ontology driven, service-oriented software environment. A proof-of-concept prototype has been developed demonstrating the usability of IFC information to collaborate with Sydney Opera House’s specific data sources using semantic web ontologies.
Resumo:
An important responsibility of principals in schools is fostering a healthy learning-rich environment for both staff and students. Previous research (Duignan & Gurr, 2008; Ehrich, 1998; Leithwood & Day, 2007; Nias, Southworth, & Campbell, 1992) has shown that effective principals create opportunities for teachers to learn with and from each other. For instance, they are involved in establishing supportive structures and creating environments for collaboration and learning to take place (Leithwood & Day, 2007). They do this in a variety of ways such as providing resources and professional development opportunities, structuring time for staff to learn and work together, and establishing a host of other conditions to facilitate learning and sharing.
Resumo:
A major project in the Sustainable Built Assets core area is the Sustainable Sub-divisions – Ventilation Project that is the second stage of a planned series of research projects focusing on sustainable sub-divisions. The initial project, Sustainable Sub-divisions: Energy focused on energy efficiency and examined the link between dwelling energy efficiency and sub-divisional layout. In addition, the potential for on site electricity generation, especially in medium and high-density developments, was also examined. That project recommended that an existing lot-rating methodology be adapted for use in SEQ through the inclusion of sub divisional appropriate ventilation data. Acquiring that data is the object of this project. The Sustainable Sub-divisions; Ventilation Project will produce a series of reports. The first report (Report 2002-077-B-01) summarised the results from an industry workshop and interviews that were conducted to ascertain the current attitudes and methodologies used in contemporary sub-division design in South East Queensland. The second report (Report 2002-077-B-02) described how the project is being delivered as outlined in the Project Agreement. It included the selection of the case study dwellings and monitoring equipment and data management process. This third report (Report 2002-077-B-03) provides an analysis and review of the approaches recommended by leading experts, government bodies and professional organizations throughout Australia that aim to increase the potential for passive cooling and heating at the subdivision stage. This data will inform issues discussed on the development of the enhanced lot-rating methodology in other reports of this series. The final report, due in June 2007, will detail the analysis of data for winter 2006 and summer 2007, leading to the development and delivery of the enhanced lot-rating methodology.