997 resultados para 270799 Ecology and Evolution not elsewhere classified


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a systematic approach to proving temporal properties of arbitrary Z specifications. The approach involves (i) transforming the Z specification to an abstract temporal structure (or state transition system), (ii) applying a model checker to the temporal structure, (iii) determining whether the temporal structure is too abstract based on the model checking result and (iv) refining the temporal structure where necessary. The approach is based on existing work from the model checking literature, adapting it to Z.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the proliferation of relational database programs for PC's and other platforms, many business end-users are creating, maintaining, and querying their own databases. More importantly, business end-users use the output of these queries as the basis for operational, tactical, and strategic decisions. Inaccurate data reduce the expected quality of these decisions. Implementing various input validation controls, including higher levels of normalisation, can reduce the number of data anomalies entering the databases. Even in well-maintained databases, however, data anomalies will still accumulate. To improve the quality of data, databases can be queried periodically to locate and correct anomalies. This paper reports the results of two experiments that investigated the effects of different data structures on business end-users' abilities to detect data anomalies in a relational database. The results demonstrate that both unnormalised and higher levels of normalisation lower the effectiveness and efficiency of queries relative to the first normal form. First normal form databases appear to provide the most effective and efficient data structure for business end-users formulating queries to detect data anomalies.