923 resultados para 230113 Dynamical Systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bistable dynamical switches are frequently encountered in mathematical modeling of biological systems because binary decisions are at the core of many cellular processes. Bistable switches present two stable steady-states, each of them corresponding to a distinct decision. In response to a transient signal, the system can flip back and forth between these two stable steady-states, switching between both decisions. Understanding which parameters and states affect this switch between stable states may shed light on the mechanisms underlying the decision-making process. Yet, answering such a question involves analyzing the global dynamical (i.e., transient) behavior of a nonlinear, possibly high dimensional model. In this paper, we show how a local analysis at a particular equilibrium point of bistable systems is highly relevant to understand the global properties of the switching system. The local analysis is performed at the saddle point, an often disregarded equilibrium point of bistable models but which is shown to be a key ruler of the decision-making process. Results are illustrated on three previously published models of biological switches: two models of apoptosis, the programmed cell death and one model of long-term potentiation, a phenomenon underlying synaptic plasticity. © 2012 Trotta et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new and original method for dynamical analysis of multistage cyclic structures such as turbomachinery compressors or turbines. Each stage is modeled cyclically by its elementary sector and the interstage coupling is achieved through a cyclic recombination of the interface degrees of freedom. This method is quite simple to set up; it allows us to handle the finite element models of each stage's sector directly and, as in classical cyclic symmetry analysis, to study the nodal diameter problems separately. The method is first validated on a simple case study which shows good agreements with a complete 360 deg reference calculation. An industrial example involving two HP compressor stages is then presented. Then the forced response application is presented in which synchronous engine order type excitations are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate the dynamical effects of the screened interaction in the calculations of quasiparticle energies in many-electron systems a two-delta-function generalized plasma pole model (GPP) is introduced to simulate the dynamical dielectric function. The usual single delta-function GPP model has the drawback of over simplifications and for the crystals without the center of symmetry is inappropriate to describe the finite frequency behavior for dielectric function matrices. The discrete frequency summation method requires too much computation to achieve converged results since ab initio calculations of dielectric function matrices are to be carried out for many different frequencies. The two-delta GPP model is an optimization of the two approaches. We analyze the two-delta GPP model and propose a method to determine from the first principle calculations the amplitudes and effective frequencies of these delta-functions. Analytical solutions are found for the second order equations for the parameter matrices entering the model. This enables realistic applications of the method to the first principle quasiparticle calculations and makes the calculations truly adjustable parameter free.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the framework of the improved isospin-dependent quantum molecular dynamics (ImIQMD) model,he fusion dynamics of symmetric reaction systems are investigated systematically. Calculations show that the number of nucleon transfer in the neck region is appreciably dependent on the incident energies, but strongly on he reaction systems. A comparison of the neck dynamics is performed for the symmetric reactions 58Ni+58Niand 64Ni+64Ni at energies in the vicinity of the Coulomb barrier. An increase of the ratios of the neutron to proton in the neck region at initial collision stage is observed and obvious for the latter system, which reduces the fusion barrier of two colliding nuclei. The distribution of the dynamical fusion barriers and the fusion excitation functions are calculated and compared with the available experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The shell correction is proposed in the improved isospin dependent quantum molecular dynamics (Im-IQMD) model, which plays an important role in heavy-ion fusion reactions near Coulomb barrier. By using the ImIQMD model, the static and dynamical fusion barriers, dynamical barrier distribution in the fusion reactions are analyzed systematically. The fusion and capture excitation functions for a series of reaction systems are calculated and compared with experimental data. It is found that the fusion cross sections for neutron-rich systems increase obviously, and the strong shell effects of two colliding nuclei result in a decrease of the fusion cross sections at the sub-barrier energies. The lowering of the dynamical fusion barriers favors the enhancement of the sub-barrier fusion cross sections, which is related to the nucleon transfer and the neck formation in the fusion reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We give a general SU(2)(L) x SU(2)(R) x U(1)(EM) sigma model with external sources, dynamical breaking and spontaneous vacuum symmetry breaking, and present the general formulation of the model. It is found that sigma and pi(0) without electric charges have electromagnetic interaction effects coming front the internal structures. A general Lorentz transformation relative to external sources J(gauge) - (J(A mu) J(A mu)(kappa)) derived, using the general Lorentz transformation and the four-dimensional current of nuclear matter of the ground si ate with J(gauge) = 0, we give the four-dimensional general relations between the different currents of nuclear matter systems with J(gauge) not equal 0 and those with J(gauge) = 0. The relation of the density's coupling with external magnetic field is derived, which conforms well to dense nuclear matter in a strong magnetic field. We show different condensed effects in strong interaction about fermions and antifermions, and give the concrete scalar and pseudoscalar condensed expressions of sigma(0) and pi(0) bosons. About different dynamical breaking and spontaneous vacuum symmetry breaking, the concrete expressions of different mass spectra are obtained in field theory. This paper acquires the running spontaneous vacuum breaking value sigma'(0), and obtains the spontaneous vacuum breaking in tenus of the running sigma'(0), which make nucleon, sigma, and pi particles gain effective masses. We achieve both the effect of external sources and nonvanishing value of the condensed scalar and pseudoscalar paticles. It is deduced that the masses of nucleons, sigma and pi generally depend on different external sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Huelse, M, Barr, D R W, Dudek, P: Cellular Automata and non-static image processing for embodied robot systems on a massively parallel processor array. In: Adamatzky, A et al. (eds) AUTOMATA 2008, Theory and Applications of Cellular Automata. Luniver Press, 2008, pp. 504-510. Sponsorship: EPSRC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the motion of ballistic electrons within a superlattice miniband under the influence of an alternating electric field. We show that the interaction of electrons with the self-consistent electromagnetic field generated by the electron current may lead to the transition from regular to chaotic dynamics. We estimate the conditions for the experimental observation of this deterministic chaos and discuss the similarities of the superlattice system with the other condensed matter and quantum optical systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neutron multidetector DéMoN has been used to investigate the symmetric splitting dynamics in the reactions 58.64Ni + 208Pb with excitation energies ranging from 65 to 186 MeV for the composite system. An analysis based on the new backtracing technique has been applied on the neutron data to determine the two-dimensional correlations between the parent composite system initial thermal energy (EthCN) and the total neutron multiplicity (νtot), and between pre- and post-scission neutron multiplicities (νpre and νpost, respectively). The νpre distribution shape indicates the possible coexistence of fast-fission and fusion-fission for the system 58Ni + 208Pb (Ebeam = 8.86 A MeV). The analysis of the neutron multiplicities in the framework of the combined dynamical statistical model (CDSM) gives a reduced friction coefficient β = 23 ± 2512 × 1021 s-1, above the one-body dissipation limit. The corresponding fission time is τf = 40 ± 4620 × 10-21 s. © 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present two strategies to enhance the dynamical entanglement transfer from continuous-variable (CV) to finite-dimensional systems by employing multiple qubits. First, we consider the entanglement transfer to a composite finite-dimensional system of many qubits simultaneously interacting with a bipartite CV field. We show that, considering realistic conditions in the generation of CV entanglement, a small number of qubits resonantly coupled to the CV system are sufficient for an almost complete dynamical transfer of the entanglement. Our analysis also sheds further light on the transition between the microscopic and macroscopic behaviors of composite finite-dimensional systems coupled to bosonic fields (like atomic clouds interacting with light). Furthermore, we present a protocol based on sequential interactions of the CV system with some ancillary qubit systems and on subsequent measurements, allowing us to probabilistically convert CV entanglement into "almost-perfect" Bell pairs of two qubits. Our proposals are suited for realizations in various experimental settings, ranging from cavity-QED to cavity-integrated superconducting devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been widely thought that measuring the misalignment angle between the orbital plane of a transiting exoplanet and the spin of its host star was a good discriminator between different migration processes for hot-Jupiters. Specifically, well-aligned hot-Jupiter systems (as measured by the Rossiter-McLaughlin effect) were thought to have formed via migration through interaction with a viscous disc, while misaligned systems were thought to have undergone a more violent dynamical history. These conclusions were based on the assumption that the planet-forming disc was well-aligned with the host star. Recent work by Lai et al. has challenged this assumption, and proposes that the star-disc interaction in the pre-main sequence phase can exert a torque on the star and change its rotation axis angle. We have estimated the stellar rotation axis of a sample of stars which host spatially resolved debris disks. Comparison of our derived stellar rotation axis inclination angles with the geometrically measured debris-disk inclinations shows no evidence for a misalignment between the two.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamical Casimir effect (DCE) predicts the generation of photons from the vacuum due to the parametric amplification of the quantum fluctuations of an electromagnetic field. The verification of such an effect is still elusive in optical systems due to the very demanding requirements of its experimental implementation. We show that an ensemble of two-level atoms collectively coupled to the electromagnetic field of a cavity, driven at low frequencies and close to a quantum phase transition, stimulates the production of photons from the vacuum. This paves the way to an effective simulation of the DCE through a mechanism that has recently found experimental demonstration. The spectral properties of the emitted radiation reflect the critical nature of the system and allow us to link the detection of the DCE to the Kibble-Zurek mechanism for the production of defects when crossing a continuous phase transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an ab initio real-time-based computational approach to study nonlinear optical properties in condensed matter systems that is especially suitable for crystalline solids and periodic nanostructures. The equations of motion and the coupling of the electrons with the external electric field are derived from the Berry-phase formulation of the dynamical polarization [Souza et al., Phys. Rev. B 69, 085106 (2004)]. Many-body effects are introduced by adding single-particle operators to the independent-particle Hamiltonian. We add a Hartree operator to account for crystal local effects and a scissor operator to correct the independent particle band structure for quasiparticle effects. We also discuss the possibility of accurately treating excitonic effects by adding a screened Hartree-Fock self-energy operator. The approach is validated by calculating the second-harmonic generation of SiC and AlAs bulk semiconductors: an excellent agreement is obtained with existing ab initio calculations from response theory in frequency domain [Luppi et al., Phys. Rev. B 82, 235201 (2010)]. We finally show applications to the second-harmonic generation of CdTe and the third-harmonic generation of Si. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the production of defects during the dynamical crossing of a mean-field phase transition with a real order parameter. When the parameter that brings the system across the critical point changes in time according to a power-law schedule, we recover the predictions dictated by the well-known Kibble-Zurek theory. For a fixed duration of the evolution, we show that the average number of defects can be drastically reduced for a very large but finite system, by optimizing the time dependence of the driving using optimal control techniques. Furthermore, the optimized protocol is robust against small fluctuations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present Rossiter-McLaughlin observations of WASP-13b and WASP-32b and determine the sky-projected angle between the normal of the planetary orbit and the stellar rotation axis (λ). WASP-13b and WASP-32b both have prograde orbits and are consistent with alignment with measured sky-projected angles of λ =8°^{+13}_{-12} and λ =-2°^{+17}_{-19}, respectively. Both WASP-13 and WASP-32 have Teff < 6250 K, and therefore, these systems support the general trend that aligned planetary systems are preferentially found orbiting cool host stars. A Lomb-Scargle periodogram analysis was carried out on archival SuperWASP data for both systems. A statistically significant stellar rotation period detection (above 99.9 per cent confidence) was identified for the WASP-32 system with Prot =11.6 ± 1.0 days. This rotation period is in agreement with the predicted stellar rotation period calculated from the stellar radius, R*, and vsin i if a stellar inclination of i* =90° is assumed. With the determined rotation period, the true 3D angle between the stellar rotation axis and the planetary orbit, ψ, was found to be ψ = 11° ± 14°. We conclude with a discussion on the alignment of systems around cool host stars with Teff < 6150 K by calculating the tidal dissipation time-scale. We find that systems with short tidal dissipation time-scales are preferentially aligned and systems with long tidal dissipation time-scales have a broad range of obliquities.