955 resultados para 2,4-dichlorophenol
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Peroxidase activity was characterized in lettuce (Lactuca sativa L.) leaf tissue. Changes in the activity and distribution of the enzyme were examined during the development of a nonhost hypersensitive reaction (HR) induced by Pseudomonas syringae (P. s.) pv phaseolicola and in response to an hrp mutant of the bacterium. Assays of activity in tissue extracts revealed pH optima of 4.5, 6.0, 5.5 to 6.0, and 6.0 to 6.5 for the substrates tetramethylbenzidine, guaiacol, caffeic acid, and chlorogenic acid, respectively. Inoculation with water or with wild-type or hrp mutant strains of P. s. pv phaseolicola caused an initial decline in total peroxidase activity; subsequent increases depended on the hydrogen donor used in the assay. Guaiacol peroxidase recovered more rapidly in tissues undergoing the HR, whereas changes in tetramethylbenzidine peroxidase were generally similar in the two interactions. In contrast, increases in chlorogenic acid peroxidase were significantly higher in tissues inoculated with the hrp mutant. During the HR, increased levels of Mn2+/2,4-dichlorophenol-stimulated NADH and NADPH oxidase activities, characteristic of certain peroxidases, were found in intercellular fluids and closely matched the accumulation of H2O2 in the apoplast. Histochemical analysis of peroxidase distribution by electron microscopy revealed a striking, highly localized increase in activity within the endomembrane system and cell wall at the sites of bacterial attachment. However, no clear differences in peroxidase location were observed in tissue challenged by the wild-type strain or the hrp mutant. Our results highlight the significance of the subcellular control of oxidative reactions leading to the generation of reactive oxygen species, cell wall alterations, and the HR.
Resumo:
Halogen-containing aromatics, mainly bromine-containing phenols, are harmful compounds contaminating pyrolysis oil from electronic boards containing halogenated flame retardants. In addition, theirformation increases the potential for evolution of polybrominated dibenzo-p-dioxins (PBDDs) and dibenzofurans (PBDFs) at relatively low temperature (up to 500 °C). As a model compound, 2,4-dibromophenol (DBP) was pyrolyzed at 290-450 °C. While its pyrolysis in a nitrogen flow reactor or in encapsulated ampules yields bromine-containing phenols, phenoxyphenols, PBDDs, and PBDFs, pyrolysis of DBP in a hydrogen-donating medium of polypropylene (PP) at 290-350 °C mainly results in the formation of phenol and HBr, indicating the occurrence of a facile hydrodebromination of DBP. The hydrodebromination efficiency depends on temperature, pressure, and the ratio of the initial components. This thermal behavior of DBP is compared to that of 2,4-dichlorophenol and decabromodiphenyl ether. A treatment of halogen-containing aromatics with PP offers a new perspective on the development of low-environmental-impact disposal processes for electronic scrap. © 2005 American Chemical Society.
Resumo:
The structures of two 1:1 proton-transfer red-black dye compounds formed by reaction of aniline yellow [4-(phenyldiazenyl)aniline] with 5-sulfosalicylic acid and benzenesulfonic acid, and a 1:2 nontransfer adduct compound with 3,5-dinitrobenzoic acid have been determined at either 130 or 200 K. The compounds are 2-(4-aminophenyl)-1-phenylhydrazin-1-ium 3-carboxy-4-hydroxybenzenesulfonate methanol solvate, C12H12N3+.C7H5O6S-.CH3OH (I), 2-(4-aminophenyl)-1-hydrazin-1-ium 4-(phenydiazinyl)anilinium bis(benzenesulfonate), 2C12H12N3+.2C6H5O3S-, (II) and 4-(phenyldiazenyl)aniline-3,5-dinitrobenzoic acid (1/2) C12H11N3.2C~7~H~4~N~2~O~6~, (III). In compound (I) the diaxenyl rather than the aniline group of aniline yellow is protonated and this group subsequently akes part in a primary hydrogen-bonding interaction with a sulfonate O-atom acceptor, producing overall a three-dimensional framework structure. A feature of the hydrogen bonding in (I) is a peripheral edge-on cation-anion association involving aromatic C--H...O hydrogen bonds, giving a conjoint R1/2(6)R1/2(7)R2/1(4)motif. In the dichroic crystals of (II), one of the two aniline yellow species in the asymmetric unit is diazenyl-group protonated while in the other the aniline group is protonated. Both of these groups form hydrogen bonds with sulfonate O-atom acceptors and thee, together with other associations give a one-dimensional chain structure. In compound (III), rather than proton-transfer, there is a preferential formation of a classic R2/2(8) cyclic head-to-head hydrogen-bonded carboxylic acid homodimer between the two 3,5-dinitrobenzoic acid molecules, which in association with the aniline yellow molecule that is disordered across a crystallographic inversion centre, result in an overall two-dimensional ribbon structure. This work has shown the correlation between structure and observed colour in crystalline aniline yellow compounds, illustrated graphically in the dichroic benzenesulfonate compound.
Resumo:
In the structure of the title compound C8H12NO+ C7H5O6S- . H2O, from the reaction of 2-(4-aminophenyl)ethanol with 5-sulfosalicylic acid, the cations form head-to-tail hydrogen-bonded chains through C1/1(9) anilinium N+-H...O(hydroxyl} interactions while the anions also form similar but C1/1(8)-linked chains through carboxylic acid O-..O(sulfonate) interactions. The chains inter-associate through a number of N-H...O and O-H...O bridging interactions giving a two-dimensional array in the ab plane.
Resumo:
The structures of the anhydrous proton-transfer compounds of the sulfa drug sulfamethazine with 5-nitrosalicylic acid and picric acid, namely 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2-hydroxy-5-nitrobenzoate, C12H15N4O2S(+)·C7H4NO4(-), (I), and 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2,4,6-trinitrophenolate, C12H15N4O2S(+)·C6H2N3O7(-), (II), respectively, have been determined. In the asymmetric unit of (I), there are two independent but conformationally similar cation-anion heterodimer pairs which are formed through duplex intermolecular N(+)-H...Ocarboxylate and N-H...Ocarboxylate hydrogen-bond pairs, giving a cyclic motif [graph set R2(2)(8)]. These heterodimers form separate and different non-associated substructures through aniline N-H...O hydrogen bonds, one one-dimensional, involving carboxylate O-atom acceptors, the other two-dimensional, involving both carboxylate and hydroxy O-atom acceptors. The overall two-dimensional structure is stabilized by π-π interactions between the pyrimidinium ring and the 5-nitrosalicylate ring in both heterodimers [minimum ring-centroid separation = 3.4580 (8) Å]. For picrate (II), the cation-anion interaction involves a slightly asymmetric chelating N-H...O R2(1)(6) hydrogen-bonding association with the phenolate O atom, together with peripheral conjoint R1(2)(6) interactions between the same N-H groups and O atoms of the ortho-related nitro groups. An inter-unit amine N-H...Osulfone hydrogen bond gives one-dimensional chains which extend along a and inter-associate through π-π interactions between the pyrimidinium rings [centroid-centroid separation = 3.4752 (9) Å]. The two structures reported here now bring to a total of four the crystallographically characterized examples of proton-transfer salts of sulfamethazine with strong organic acids.
Resumo:
Benzothiazoles are multitarget agents with broad spectrum of biological activity. Among the antitumor agents discovered in recent years, the identification of various 2-(4-aminophenyl) benzothiazoles as potent and selective antitumor drugs against different cancer cell lines has stimulated remarkable interest. Some of the benzothiazoles are known to induce cell cycle arrest, activation of caspases and interaction with DNA molecule. Based on these interesting properties of benzothiazoles and to obtain new biologically active agents, a series of novel 4,5,6,7-tetrahydrobenzo[d]thiazole derivatives 5(a-i) were synthesized and evaluated for their efficacy as antileukemic agents in human leukemia cells (K562 and Reh). The chemical structures of the synthesized compounds were confirmed by H-1 NMR, LCMS and IR analysis. The cytotoxicity of these compounds were determined using trypan blue exclusion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Results showed that, these compounds mediate a significant cytotoxic response to cancer cell lines tested. We found that the compounds having electron withdrawing groups at different positions of the phenyl ring of the thiourea moiety displayed significant cytotoxic effect with IC50 value less than 60 mu M. To rationalize the role of electron withdrawing group in the induction of cytotoxicity, we have chosen molecule 5g (IC50 similar to 15 mu M) which is having chloro substitution at ortho and para positions. Flow cytometric analysis of annexin V-FITC/ propidium iodide (PI) double staining and DNA fragmentation suggest that 5g can induce apoptosis.
Resumo:
Reactions of cis-[(C6H5N)PC1]z(1 ) with the difunctional reagents HO(CH2)20H,H (CH3)N(CHz)zN(CH3)HH, (CH3)N(CH& OH, and HO(CHz)30Hi n the presence of triethylamine yield the new bicyclic 1,3,2X3,4h3-diazadiphosphetidines[( C6H5- N)PIZ[-O(CHZ)Zo-l (2), [(C6H5N)PlZ[-(CH3)N(CHZ)ZN(CH3)-l (319 [(C6H~N)PlZ~-(CH3)N(cHZ)20 (4), and [(C6H5 N)P],[-Q(CH2),0-] (5), respectively. The products have been characterized by elemental analyses and IR and NMR spectroscopic data. The structures of 4 and 5 have been determined by single-crystal X-ray analysis. Crystal data for 4: monoclinic, P2,/c, a = 9.823 (2) A, b = 8.608 (1) A, c = 18.423 (3) A, i3 = 90.55 (1)O, Z = 4. Crystal data for 5 monoclinic, P2,/c, a = 9.727 (2) A, b = 8.064 (2) A, c = 19.702 (4) A, @ =I 91.31 (l)', 2 = 4. The structures have been solved by direct methods and refined to R = 0.028 for 4 and R = 0.050 for 5. Compound 4 is the first example of an aminoalkoxy-l,3,2X3,4X3-diazadiphosphetidine. The PzNz ring is slightly puckered in both 4 and 5 and the puckering occurs in a manner opposite to that observed for cis-[(RN)PX],structures.
Resumo:
Diruthenium(II1) compounds, Ru20(02CAr)2(MeCN)4(PPh3)2(C104)(z1~) Hazn0d R U ~ O ( O ~ C A ~ ) ~(2() P(PA~r ~= )P~h,C6H4-p-OMe), were prepared by reacting R U ~ C I ( O ~ CaAnd~ P)P~h 3 in MeCN and characterized by analytical and spectral data. The molecular structures of 1 with Ar = Ph and of 2 with Ar = C&p-OMe were determined by X-ray crystallography. Crystal data for Ru~~(~~CP~)~(M~CN),(PP~(~la)):~ m(oCnIoc~lin,ic), n~/~cH, ~a O= 27.722 (3) A, b = 10.793 (2) A, c = 23.445 ( 2 )A , fi = 124.18 (l)', V = 5803 A3, and 2 = 4. Cr stal data for Ru~O(O~CC~H~-~-O(M2b~): )o~rth(orPhoPm~bi~c, )Pn~n a, a = 22.767 (5) A, b = 22.084 (7) A, c = 12.904 (3) 1, V = 6488 AS; and 2 = 4. Both 1 and 2 have an (Ruz0(02CAr)z2t1 core that is analogous to the diiron core present in the oxidized form of the nonheme respiratory protein hemerythrin. The Ru-Ru distances of 3.237 (1) and 3.199 ( I ) A observed in 1 and 2, respectively, are similar to the M-M distances known in other model systems. The essentially diamagnetic nature of 1 and 2 is due to the presence of two strongly interacting t22 Ru"' centers. The intense colors of 1 (blue) and 2 (purple) are due to the charge-transfer transition involving an ( R ~ ~ ( f i - 0m)o~ie~ty.) The presence of labile MeCN and carboxylato ancillary ligands in I and 2, respectively, makes these systems reactive toward amine and heterocyclic bases.
Resumo:
4-Thiazolidinone derivatives were synthesized using T3P (R)-DMSO media as a cyclodehydrating agent. All the molecules were tested for their cytotoxicity against leukemic cell lines. The compound 3-(4-bromophenyl)-2-(4-(dimethylamino)phenyl)thiazolidin-4-one (4e) with electron donating substituent at para position of phenyl ring displayed considerable cytotoxicity against Reh and Nalm6 cells with an IC50 value of 11.9 and 13.5 mu M, respectively. Furthermore, the compound 4e tested for tumor regression studies induced by EAC in Swiss albino mouse. Both in vitro and in vivo results suggested significant antiproliferative activity of compound 4e in Reh cells and mouse tumor tissue treated with compound 4e showed multifocal areas of necrosis and numerous number of apoptotic cells. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Three kinds of Er3+-doped tellurite glasses with different hydroxyl groups are prepared by the conventional melt-quenching method. Infrared spectra are measured to estimate the exact content of OH- groups in samples. The maximum phonon energy in glasses are obtained by measuring the Raman scattering spectra. The strength parameters Omega(t) (t = 2, 4, 6) for all the samples are calculated and compared. The nonradiative decay rate of the Er3+ I-4(13/2) -> I-4(15/2) transition are calculated for the glass samples with different phonon energy and OH- group contents. Finally, the effect of OH- groups on fluorescence decay rate of Er3+ is analysed, the constant KOH-Er Of TWN, TZPL and TZL glasses are calculated to be 9.2 x 10(-19) cm(4)s(-1), 5.9 x 10(-19) cm(4)s(-1), and 3.5 x 10(-19) cm(4)s(-1), respectively.
Resumo:
Two novel compounds, [Co(4,4'-bipy)(H2O)(4)](4-abS)(2).H2O (1) and [Mn(4,4'-bipy)(H2O)(4)](4-abs)(2).2H(2)O (2) (4,4'-bipy = 4,4'-bipyridine; 4-abs = 4-aminobenzenesulfonate), have been synthesized in aqueous solution and characterized by single-crystal X-ray diffraction, elemental analyses, UV-vis and IR spectra, and TG analysis. X-ray structural analysis revealed that 1 and 2 both possess unusual hydrogen-bonded three-dimensional (3-D) networks encapsulating one-dimensional (1-D) covalently bonded infinite [M(4,4'-bipy)(H2O)(4)](2+) (M = Co, Mn) chains. The 4-abs anions in 1 form 1-D zigzag chains through hydrogen bonds. These chains are further extended through crystallization water molecules into 3-D hydrogen-bonded networks with 1-D channels, in which the [Co(4,4'-bipy)(H2O)(4)](2+) linear covalently bonded chains are located. Crystal data for 1: C22H30CoN4O11S2, monoclinic P2(1), a = 11.380(2) Angstrom, b = 8.0274(16) Angstrom, c = 15.670(3) Angstrom, alpha = gamma = 90degrees, beta = 92.82(3)degrees, Z = 2. Compound 2 contains interesting two-dimensional (2-D) honeycomb-like networks formed by 4-abs anions and lattice water molecules via hydrogen bonding, which are extended through other crystallization water molecules into three dimensions with 1-D hexagonal channels. The [Mn(4,4'-bipy)(H2O)(4)](2+) linear covalent chains exist in these channels. Crystal data for 2: C22H32WN4O12S2, monoclinic P2(1)/c, a = 15.0833(14) Angstrom, b = 8.2887(4) Angstrom, c = 23.2228(15) Angstrom, alpha = gamma = 90degrees, beta = 95.186(3)degrees, Z = 4.
Resumo:
The title complexes were synthesized and the crystal structures of their salts were determined by single-crystal X-ray structure analyses. Na-2[Zn-I(ida)(2)]. 7H(2)O: Triclinic, P1, a=0.523 4(2) nm, b=0.897 10(10) nm, c=1.069 10(10) nm, alpha=85.910(10)degrees, beta= 76.380(10)degrees, gamma=83.52(2)degrees, V=0.484 2(2) nm(3), Z=1. The complex anion [Zn-I (ida)(2)](2-) has a pseudo-octahedral structure in which the two N atoms: are in a trans configuration. Na-4[Hg-I(nta)(2)]. 7H(2)O: Monoclinic, C-c, a = 1.795 0(4) nm, b = 0.892 9(2)nm, c = 1.575 4(2) nm, beta = 92.78 (3)degrees, V = 2.526 2(9) nm(3), Z = 4. The complex anion [Hg-I (nta)(2)](4-) has a pseudo-bicapped-octahedral structure in which the two N atoms are in a trans configuration.
Resumo:
4-(2-氨基噻唑)-间苯二酚为柱前衍化剂液相色谱/电化学检测Fe、Co、Ni格日勒,李惠梅,李南强,汪尔康(中国科学院长春应用化学研究所电分析化学开放实验室,北京大学化学系,长春,130022)关键词液相色谱,Fe,Co,Ni,4-(2-氨基噻唑)...
Resumo:
The reactions of [Cp2Mo2(CO)4] (1) with 2,2'-dipyridyl disulphide (C5H4NS-)2, 8,8'-diquinolyl disulphide (C9H6NS-)2 and tetramethyl thiuram disulphide (Me2NC(S)S-)2 in toluene solution resulted in the cleavage of the Mo-Mo triple bond to yield molybdenum complexes [CpMo(CO)2(C5H4NS)] (2), [CpMo(CO)2(C9H6NS)] (3) and [CpMo(CO)2(S2CNMe2)] (4), respectively. The molecular structures of 2, 3 . O=PPh3 and 4 were determined by X-ray diffraction studies. Crystals of 2 are monoclinic, space group P2(1)/n, with Z = 4, in a unit cell of dimensions a = 6.448(1), b = 12.616(2), c = 14.772(2) angstrom, beta = 92.85(1)-degrees. The structure was refined to R = 0.028 and R(w) = 0.039 for 1357 observed reflections. Crystals of 3 . O=PPh3 are triclinic, space group P1BAR, with Z = 2, in a unit cell of dimensions a = 11.351(3), b = 13.409(3), c = 9.895(2) angstrom, alpha = 94.59(2), beta = 90.35(2), gamma = 78.07(2)-degrees. The structure was refined to R = 0.033 and R(w) = 0.037 for 3260 observed reflections. Crystals of 4 are monoclinic, space group P2(1)/a and Z = 4 with a = 12.468(5), b = 7.637(2), c = 13.135(4) angstrom, beta = 96.62(3). The structure was refined to R = 0.032 and R(w) = 0.042 for 1698 observed reflections. Each of complexes 2-4 contains a cyclopentadienyl ligand, a cis pair of carbonyls and a chelate ligand (S,N donor or S,S donor). All the compounds have distorted square-pyramid structures.