916 resultados para 1098
Resumo:
We discuss and test the potential usefulness of single-column models (SCMs) for the testing of stchastic physics schemes that have been proposed for use in general circulation models (GCMs). We argue that although single column tests cannot be definitive in exposing the full behaviour of a stochastic method in the full GCM, and although there are differences between SCM testing of deterministic and stochastic methods, nonetheless SCM testing remains a useful tool. It is necessary to consider an ensemble of SCM runs produced by the stochastic method. These can be usefully compared to deterministic ensembles describing initial condition uncertainty and also to combinations of these (with structural model changes) into poor man's ensembles. The proposed methodology is demonstrated using an SCM experiment recently developed by the GCSS community, simulating the transitions between active and suppressed periods of tropical convection.
Resumo:
Compute grids are used widely in many areas of environmental science, but there has been limited uptake of grid computing by the climate modelling community, partly because the characteristics of many climate models make them difficult to use with popular grid middleware systems. In particular, climate models usually produce large volumes of output data, and running them also involves complicated workflows implemented as shell scripts. A new grid middleware system that is well suited to climate modelling applications is presented in this paper. Grid Remote Execution (G-Rex) allows climate models to be deployed as Web services on remote computer systems and then launched and controlled as if they were running on the user's own computer. Output from the model is transferred back to the user while the run is in progress to prevent it from accumulating on the remote system and to allow the user to monitor the model. G-Rex has a REST architectural style, featuring a Java client program that can easily be incorporated into existing scientific workflow scripts. Some technical details of G-Rex are presented, with examples of its use by climate modellers.
Resumo:
Finite computing resources limit the spatial resolution of state-of-the-art global climate simulations to hundreds of kilometres. In neither the atmosphere nor the ocean are small-scale processes such as convection, clouds and ocean eddies properly represented. Climate simulations are known to depend, sometimes quite strongly, on the resulting bulk-formula representation of unresolved processes. Stochastic physics schemes within weather and climate models have the potential to represent the dynamical effects of unresolved scales in ways which conventional bulk-formula representations are incapable of so doing. The application of stochastic physics to climate modelling is a rapidly advancing, important and innovative topic. The latest research findings are gathered together in the Theme Issue for which this paper serves as the introduction.
Resumo:
Point defects in metal oxides such as TiO2 are key to their applications in numerous technologies. The investigation of thermally induced nonstoichiometry in TiO2 is complicated by the difficulties in preparing and determining a desired degree of nonstoichiometry. We study controlled self-doping of TiO2 by adsorption of 1/8 and 1/16 monolayer Ti at the (110) surface using a combination of experimental and computational approaches to unravel the details of the adsorption process and the oxidation state of Ti. Upon adsorption of Ti, x-ray and ultraviolet photoemission spectroscopy (XPS and UPS) show formation of reduced Ti. Comparison of pure density functional theory (DFT) with experiment shows that pure DFT provides an inconsistent description of the electronic structure. To surmount this difficulty, we apply DFT corrected for on-site Coulomb interaction (DFT+U) to describe reduced Ti ions. The optimal value of U is 3 eV, determined from comparison of the computed Ti 3d electronic density of states with the UPS data. DFT+U and UPS show the appearance of a Ti 3d adsorbate-induced state at 1.3 eV above the valence band and 1.0 eV below the conduction band. The computations show that the adsorbed Ti atom is oxidized to Ti2+ and a fivefold coordinated surface Ti atom is reduced to Ti3+, while the remaining electron is distributed among other surface Ti atoms. The UPS data are best fitted with reduced Ti2+ and Ti3+ ions. These results demonstrate that the complexity of doped metal oxides is best understood with a combination of experiment and appropriate computations.
Resumo:
Shelf and coastal seas are regions of exceptionally high biological productivity, high rates of biogeochemical cycling and immense socio-economic importance. They are, however, poorly represented by the present generation of Earth system models, both in terms of resolution and process representation. Hence, these models cannot be used to elucidate the role of the coastal ocean in global biogeochemical cycles and the effects global change (both direct anthropogenic and climatic) are having on them. Here, we present a system for simulating all the coastal regions around the world (the Global Coastal Ocean Modelling System) in a systematic and practical fashion. It is based on automatically generating multiple nested model domains, using the Proudman Oceanographic Laboratory Coastal Ocean Modelling System coupled to the European Regional Seas Ecosystem Model. Preliminary results from the system are presented. These demonstrate the viability of the concept, and we discuss the prospects for using the system to explore key areas of global change in shelf seas, such as their role in the carbon cycle and climate change effects on fisheries.
Resumo:
A new 'storm-tracking approach' to analysing the prediction of storms by different forecast systems has recently been developed. This paper provides a brief illustration of the type of results/information that can be obtained using the approach. It also describes in detail how eScience methodologies have been used to help apply the storm-tracking approach to very large datasets
Resumo:
The ability of climate models to reproduce and predict land surface anomalies is an important but little-studied topic. In this study, an atmosphere and ocean assimilation scheme is used to determine whether HadCM3 can reproduce and predict snow water equivalent and soil moisture during the 1997–1998 El Nino Southern Oscillation event. Soil moisture is reproduced more successfully, though both snow and soil moisture show some predictability at 1- and 4-month lead times. This result suggests that land surface anomalies may be reasonably well initialized for climate model predictions and hydrological applications using atmospheric assimilation methods over a period of time.
Resumo:
Our understanding of the climate system has been revolutionized recently, by the development of sophisticated computer models. The predictions of such models are used to formulate international protocols, intended to mitigate the severity of global warming and its impacts. Yet, these models are not perfect representations of reality, because they remove from explicit consideration many physical processes which are known to be key aspects of the climate system, but which are too small or fast to be modelled. The purpose of this paper is to give a personal perspective of the current state of knowledge regarding the problem of unresolved scales in climate models. A recent novel solution to the problem is discussed, in which it is proposed, somewhat counter-intuitively, that the performance of models may be improved by adding random noise to represent the unresolved processes.
Resumo:
The shallow water equations are solved using a mesh of polygons on the sphere, which adapts infrequently to the predicted future solution. Infrequent mesh adaptation reduces the cost of adaptation and load-balancing and will thus allow for more accurate mapping on adaptation. We simulate the growth of a barotropically unstable jet adapting the mesh every 12 h. Using an adaptation criterion based largely on the gradient of the vorticity leads to a mesh with around 20 per cent of the cells of a uniform mesh that gives equivalent results. This is a similar proportion to previous studies of the same test case with mesh adaptation every 1–20 min. The prediction of the mesh density involves solving the shallow water equations on a coarse mesh in advance of the locally refined mesh in order to estimate where features requiring higher resolution will grow, decay or move to. The adaptation criterion consists of two parts: that resolved on the coarse mesh, and that which is not resolved and so is passively advected on the coarse mesh. This combination leads to a balance between resolving features controlled by the large-scale dynamics and maintaining fine-scale features.
Resumo:
Although climate models have been improving in accuracy and efficiency over the past few decades, it now seems that these incremental improvements may be slowing. As tera/petascale computing becomes massively parallel, our legacy codes are less suitable, and even with the increased resolution that we are now beginning to use, these models cannot represent the multiscale nature of the climate system. This paper argues that it may be time to reconsider the use of adaptive mesh refinement for weather and climate forecasting in order to achieve good scaling and representation of the wide range of spatial scales in the atmosphere and ocean. Furthermore, the challenge of introducing living organisms and human responses into climate system models is only just beginning to be tackled. We do not yet have a clear framework in which to approach the problem, but it is likely to cover such a huge number of different scales and processes that radically different methods may have to be considered. The challenges of multiscale modelling and petascale computing provide an opportunity to consider a fresh approach to numerical modelling of the climate (or Earth) system, which takes advantage of the computational fluid dynamics developments in other fields and brings new perspectives on how to incorporate Earth system processes. This paper reviews some of the current issues in climate (and, by implication, Earth) system modelling, and asks the question whether a new generation of models is needed to tackle these problems.
Resumo:
GODIVA2 is a dynamic website that provides visual access to several terabytes of physically distributed, four-dimensional environmental data. It allows users to explore large datasets interactively without the need to install new software or download and understand complex data. Through the use of open international standards, GODIVA2 maintains a high level of interoperability with third-party systems, allowing diverse datasets to be mutually compared. Scientists can use the system to search for features in large datasets and to diagnose the output from numerical simulations and data processing algorithms. Data providers around Europe have adopted GODIVA2 as an INSPIRE-compliant dynamic quick-view system for providing visual access to their data.
Resumo:
Applications such as neuroscience, telecommunication, online social networking, transport and retail trading give rise to connectivity patterns that change over time. In this work, we address the resulting need for network models and computational algorithms that deal with dynamic links. We introduce a new class of evolving range-dependent random graphs that gives a tractable framework for modelling and simulation. We develop a spectral algorithm for calibrating a set of edge ranges from a sequence of network snapshots and give a proof of principle illustration on some neuroscience data. We also show how the model can be used computationally and analytically to investigate the scenario where an evolutionary process, such as an epidemic, takes place on an evolving network. This allows us to study the cumulative effect of two distinct types of dynamics.