954 resultados para 1, d18O-tied age mod
Resumo:
The influence of the large-scale ocean circulation on Sahel rainfall is elusive because of the shortness of the observational record. We reconstructed the history of eolian and fluvial sedimentation on the continental slope off Senegal during the past 57,000 years. Our data show that abrupt onsets of arid conditions in the West African Sahel were linked to cold North Atlantic sea surface temperatures during times of reduced meridional overturning circulation associated with Heinrich Stadials. Climate modeling suggests that this drying is induced by a southward shift of the West African monsoon trough in conjunction with an intensification and southward expansion of the midtropospheric African Easterly Jet.
Resumo:
New Mg/Ca, Sr/Ca, and published stable oxygen isotope and 87Sr/86Sr data obtained on ostracods from gravity cores located on the northwestern Black Sea slope were used to infer changes in the Black Sea hydrology and water chemistry for the period between 30 to 8 ka B.P. (calibrated radiocarbon years). The period prior to 16.5 ka B.P. was characterized by stable conditions in all records until a distinct drop in d18O values combined with a sharp increase in 87Sr/86Sr occurred between 16.5 and 14.8 ka B.P. This event is attributed to an increased runoff from the northern drainage area of the Black Sea between Heinrich Event 1 and the onset of the Bølling warm period. While the Mg/Ca and Sr/Ca records remained rather unaffected by this inflow; they show an abrupt rise with the onset of the Bølling/Allerød warm period. This rise was caused by calcite precipitation in the surface water, which led to a sudden increase of the Sr/Ca and Mg/Ca ratios of the Black Sea water. The stable oxygen isotopes also start to increase around 15 ka B.P., although in a more gradual manner, due to isotopically enriched meteoric precipitation. While Sr/Ca remains constant during the following interval of the Younger Dryas cold period, a decrease in the Mg/Ca ratio implies that the intermediate water masses of the Black Sea temporarily cooled by 1-2°C during the Younger Dryas. The 87Sr/86Sr values drop after the cessation of the water inflow at 15 ka B.P. to a lower level until the Younger Dryas, where they reach values similar to those observed during the Last Glacial Maximum. This might point to a potential outflow to the Mediterranean Sea via the Sea of Marmara during this period. The inflow of Mediterranean water started around 9.3 ka B.P., which is clearly detectable in the abruptly increasing Mg/Ca, Sr/Ca, and 87Sr/86Sr values. The accompanying increase in the d18O record is less pronounced and would fit to an inflow lasting ~100 a.
Resumo:
Past hydrological changes in Africa have been linked to various climatic processes, depending on region and timescale. Long-term precipitation changes in the regions of northern and southern Africa influenced by the monsoons are thought to have been governed by precessional variations in summer insolation (Kutzbach and Liu, 1997, doi:10.1126/science.278.5337.440; Partridge et al., 1997, doi:10.1016/S0277-3791(97)00005-X). Conversely, short-term precipitation changes in the northern African tropics have been linked to North Atlantic sea surface temperature anomalies, affecting the northward extension of the Intertropical Convergence Zone and its associated rainbelt (Hastenrath, 1990, doi:10.1002/joc.3370100504, Street-Perrott and Perrott, 1990, doi:10.1038/343607a0). Our knowledge of large-scale hydrological changes in equatorial Africa and their forcing factors is, however, limited (Gasse, 2000, doi:10.1016/S0277-3791(99)00061-X). Here we analyse the isotopic composition of terrigenous plant lipids, extracted from a marine sediment core close to the Congo River mouth, in order to reconstruct past central African rainfall variations and compare this record to sea surface temperature changes in the South Atlantic Ocean. We find that central African precipitation during the past 20,000 years was mainly controlled by the difference in sea surface temperatures between the tropics and subtropics of the South Atlantic Ocean, whereas we find no evidence that changes in the position of the Intertropical Convergence Zone had a significant influence on the overall moisture availability in central Africa. We conclude that changes in ocean circulation, and hence sea surface temperature patterns, were important in modulating atmospheric moisture transport onto the central African continent.
Resumo:
The marine transgression Into the Baltic Sea through the Great Belt took place around 9,370 calibrated C-14-years B.P. The sedimentary sequence from the early brackish phase and the change to marine conditions has been investigated in detail through C-14-datings, and oxygen and carbon isotope measurements, and is interpreted by comparison with modern analogs. The oldest brackish sediments are the strongly laminated clays and silts rich in organic carbon followed by non-laminated heavily bioturbated silts. The bedding and textural characteristics and stable isotope analyses on Ammonia beccarii (dextral) and A. beccarii (sinistral) show that the deposltlonal conditions respond to a change at about 9,100 cal. a B.P. from an unstratified brackish water environment in the initial stage of the Littorina Transgression to a thermohaline layered milieu in the upper unit. The oxygen isotope results indicate that the bottom waters of this latter period had salinities and temperatures comparable to the present day Kiel Bay waters. The isotopic composition of the total organic carbon and the d13C-values of A. beccarii reveal a gradual change from an initially lacustrine/terrestrial provenance toward a brackish/marine dominated depositional environment. A stagnation of the sea level at around 9,100 to 9,400 B.P. is indicated.
Resumo:
A sediment core from the western tropical Atlantic covering the last 21,000 yr has been analysed for centennial scale reconstruction of sea surface temperature (SST) and ice volume-corrected oxygen isotopic composition of sea water (delta18O(ivc-sw)) using Mg / Ca and delta18O of the shallow dwelling planktonic foraminifer Globigerinoides ruber (white). At a period between 15.5 and 17.5 kyr BP, the Mg / Ca SST and delta18O(ivc-sw), a proxy for sea surface salinity (SSS), reveals a warming of around 2.5 °C along with an increase in salinity. A second period of pronounced warming and SSS increase occurred between 11.6 and 13.5 kyr BP. Within age model uncertainties, both warming intervals were synchronous with air temperature increase over Antarctica and ice retreat in the southern South Atlantic and terminated with abrupt centennial scale SSS decrease and slight SST cooling in conjunction with interglacial reactivation of the meridional overturning circulation (MOC). We suggest that during these warm intervals, production of saline and warm water of the North Brazil Current resulted in pronounced heat and salt accumulation, and was associated with warming in the southern Atlantic, southward displacement of the intertropical convergence zone and weakened MOC. At the termination of the Younger Dryas and Heinrich event 1, intensification of cross-equatorial heat and salt transport caused centennial scale cooling and freshening of the western tropical Atlantic surface water. This study shows that the western tropical Atlantic served as a heat and salt reservoir during deglaciation. The sudden release of accumulated heat and salt at the end of Younger Drays and Heinrich event 1 may have contributed to the rapid reinvigoration of the Atlantic MOC.
Resumo:
Stable isotopic values on planktonic foraminifera in a suite of cores from basins across the SE Baffin Shelf are used to extract a record of meltwater events during Termination I deglaciation. Resolution and Hatton basins lie on the SE Baffin Shelf at water depths > 500 m, seaward of major conduits for ice drainage from the eastern sector of the Laurentide Ice Sheet (LIS). Accelerator mass spectrometry 14C dates are used to constrain our chronology of events in ten cores. In Resolution Basin, three cores have 14C AMS dates on foraminifera of > 20 ka at their bases; whereas Hatton Basin cores terminate in sediments < 13 kyr. Sedimentation rates varied between 0.1 to 4.5 m/ka. Stable oxygen and carbon isotopic ratios were obtained on 146 samples of the planktonic foraminifera Neogloboquadrina pachyderma (Ehrenberg) sinistral, from seven of the ten cores. No evidence was found to indicate that test morphology or size affected delta18O. Between 7 and 13.5 ka the surface water on the shelf was on average 1 per mil lower than the open ocean signal. Significant temporal variations were found in both delta18O and delta13C. Evidence for significant low delta18O events occurred between 13 and 8 ka. The delta13C record from the planktonic foraminifera suggests a threefold division of events between 13 and 7 ka, with positive values between 10.8 and 13.0 ka, negative values between 9 and 10.8 ka, and positive values from 7 to 9 ka. The delta18O data suggest the presence of meltwater on the shelf some 3,000 years prior to the first late glacial dates on terrestrial deglaciation (at circa 10.4 ka). "Hudson Strait must be the real key to the importance of the calving process during deglaciation, because it is potentially the largest marine outlet for the Laurentide Ice Sheet and because it leads into the very center of the ice sheet.....the rates of calving through Hudson Strait during the period of initial ?18O rise unfortunately are unknown." W. F. Ruddiman (1987, p. 151)
Resumo:
Based on organic carbon accumulation rates, nine time slices of oceanic export paleoproductivity (Pnew) are presented which depict the variability of Pnew on a global scale through the last 30,000 years and document that the basic distribution patterns did not change through glacial and interglacial times. However, the glacial ocean shows an increased contrast of high- versus low-productivity zones. d13C values of near-surface-dwelling planktonic foraminifera Globigerinoides ruber suggest that the same contrast applies to the glacial nutrient inventories of the ambient surface waters, with a significant glacial transfer of PO4 from low- to high-productivity zones. In this way, glacial Pnew increased by a global average of about 2-4 Gt C/yr and led, via an enhanced CaCO3 dissolution and alkalinity in the deep ocean, to a significant extraction of CO2 from the surface water and the atrnosphere.