987 resultados para [INFO] Computer Science [cs]
Resumo:
Long Term Evolution (LTE) is a cellular technology foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key mechanism in the LTE traffic handling is the packet scheduler, which is in charge of allocating resources to active flows in both the frequency and time dimension. In this paper we present a performance comparison of three distinct scheduling schemes for LTE uplink with main focus on the impact of flow-level dynamics resulting from the random user behaviour. We apply a combined analytical/simulation approach which enables fast evaluation of flow-level performance measures. The results show that by considering flow-level dynamics we are able to observe performance trends that would otherwise stay hidden if only packet-level analysis is performed.
Resumo:
Locally affine (polyaffine) image registration methods capture intersubject non-linear deformations with a low number of parameters, while providing an intuitive interpretation for clinicians. Considering the mandible bone, anatomical shape differences can be found at different scales, e.g. left or right side, teeth, etc. Classically, sequential coarse to fine registration are used to handle multiscale deformations, instead we propose a simultaneous optimization of all scales. To avoid local minima we incorporate a prior on the polyaffine transformations. This kind of groupwise registration approach is natural in a polyaffine context, if we assume one configuration of regions that describes an entire group of images, with varying transformations for each region. In this paper, we reformulate polyaffine deformations in a generative statistical model, which enables us to incorporate deformation statistics as a prior in a Bayesian setting. We find optimal transformations by optimizing the maximum a posteriori probability. We assume that the polyaffine transformations follow a normal distribution with mean and concentration matrix. Parameters of the prior are estimated from an initial coarse to fine registration. Knowing the region structure, we develop a blockwise pseudoinverse to obtain the concentration matrix. To our knowledge, we are the first to introduce simultaneous multiscale optimization through groupwise polyaffine registration. We show results on 42 mandible CT images.
Resumo:
With improvements in acquisition speed and quality, the amount of medical image data to be screened by clinicians is starting to become challenging in the daily clinical practice. To quickly visualize and find abnormalities in medical images, we propose a new method combining segmentation algorithms with statistical shape models. A statistical shape model built from a healthy population will have a close fit in healthy regions. The model will however not fit to morphological abnormalities often present in the areas of pathologies. Using the residual fitting error of the statistical shape model, pathologies can be visualized very quickly. This idea is applied to finding drusen in the retinal pigment epithelium (RPE) of optical coherence tomography (OCT) volumes. A segmentation technique able to accurately segment drusen in patients with age-related macular degeneration (AMD) is applied. The segmentation is then analyzed with a statistical shape model to visualize potentially pathological areas. An extensive evaluation is performed to validate the segmentation algorithm, as well as the quality and sensitivity of the hinting system. Most of the drusen with a height of 85.5 microm were detected, and all drusen at least 93.6 microm high were detected.
Resumo:
Limitations associated with the visual information provided to surgeons during laparoscopic surgery increases the difficulty of procedures and thus, reduces clinical indications and increases training time. This work presents a novel augmented reality visualization approach that aims to improve visual data supplied for the targeting of non visible anatomical structures in laparoscopic visceral surgery. The approach aims to facilitate the localisation of hidden structures with minimal damage to surrounding structures and with minimal training requirements. The proposed augmented reality visualization approach incorporates endoscopic images overlaid with virtual 3D models of underlying critical structures in addition to targeting and depth information pertaining to targeted structures. Image overlay was achieved through the implementation of camera calibration techniques and integration of the optically tracked endoscope into an existing image guidance system for liver surgery. The approach was validated in accuracy, clinical integration and targeting experiments. Accuracy of the overlay was found to have a mean value of 3.5 mm ± 1.9 mm and 92.7% of targets within a liver phantom were successfully located laparoscopically by non trained subjects using the approach.