985 resultados para wild mouse


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contraction forces developed by cardiomyocytes are transmitted across the plasma membrane through end-to-end connections between the myocytes, called intercalated disks, which enable the coordinated contraction of heart muscle. A component of the intercalated disk, the adherens junction, consists of the cell adhesion molecule, N-cadherin. Embryos lacking N-cadherin die at mid-gestation from cardiovascular abnormalities. We have evaluated the role of N-cadherin in cardiomyogenesis using N-cadherin-null mouse embryonic stem (ES) cells grown as embryoid bodies (EBs) in vitro. Myofibrillogenesis, the spatial orientation of myofibers, and intercellular contacts including desmosomes were normal in N-cadherin-null ES cell-derived cardiomyocytes. The effect of retinoic acid (RA), a stage and dose-dependent cardiogenic factor, was assessed in differentiating ES cells. all-trans (at) RA increased the number of ES cell-derived cardiomyocytes by approximately 3-fold (at 3 x 10(-9) M) in wt EBs. However, this effect was lost in N-cadherin-null EBs. In the presence of supplemented at-RA, the emergence of spontaneously beating cardiomyocytes appeared to be delayed and slightly less efficient in N-cadherin-null compared with wt and heterozygous EBs (frequencies of EBs with beating activity at 5 days: 54+/-18% vs. 96+/-0.5%, and 93+/-7%, respectively; peak frequencies of EBs with beating activity: 83+/-8% vs. 96+/-0.5% and 100%, respectively). In conclusion, cardiomyoyctes differentiating from N-cadherin-null ES cells in vitro show normal myofibrillogenesis and intercellular contacts, but impaired responses to early cardiogenic effects mediated by at-RA. These results suggest that N-cadherin may be essential for RA-induced cardiomyogenesis in mouse ES cells in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The liver of C57BL/6 mice contains a major subset of CD4+8- and CD4-8- T cell receptor (TCR)-alpha/beta+ cells expressing the polymorphic natural killer NK1.1 surface marker. Liver NK1.1+TCR-alpha/beta+ (NK1+ T) cells require interaction with beta2-microglobulin-associated, major histocompatibility complex I-like molecules on hematopoietic cells for their development and have a TCR repertoire that is highly skewed to Vbeta8.2, Vbeta7, and Vbeta2. We show here that congenic C57BL/6.Vbeta(a) mice, which lack Vbeta8- expressing T cells owing to a genomic deletion at the Vbeta locus, maintain normal levels of liver NK1+ T cells owing to a dramatic increase in the proportion of cells expressing Vbeta7 and Vbeta2 (but not other Vbetas). Moreover, in C57BL/6 congenic TCR-V Vbeta3 and -Vbeta8.1 transgenic mice (which in theory should not express other Vbeta, owing to allelic exclusion at the TCR-beta locus), endogenous TCR-Vbeta8.2, Vbeta7, and Vbeta2 (but not other Vbetas) are frequently expressed on liver NK1+T cells but absent on lymph node T cells. Finally, when endogenous V beta expression is prevented in TCR-Vbeta3 and Vbeta8.1 transgenic mice (by introduction of a null allele at the C beta locus), the development of liver NK1+T cells is totally abrogated. Collectively, our data indicate that liver NK1+T cells have a stringent requirement for expression of TCR-Vbeta8.2, Vbeta7, or Vbeta2 for their development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Le gène c-myc est un des oncogènes les plus fréquemment mutés dans les tumeurs humaines. Même si plus de 70 % des cancers humains montrent une dérégulation de c-Myc, les connaissances sur son rôle physiologique pendant le développement, et dans la souris adulte restent très peu connus. Récemment, notre laboratoire a pu montrer que c-Myc contrôle l'équilibre entre le renouvellement et la différenciation des cellules souches hématopoïetiques (CSH) dans la souris adulte. Ceci est probablement dû à lacapacité de c-Myc de contrôler l'entrée et la sortie des CSH de leur niche de la moelle osseuse, en régulant plusieurs molécules d'adhésion, parmi lesquelles la cadhérine-N (Wilson et al., 2004; Wilson and Trumpp, 2006). Des études utilisant un mutant d'inactivation ont demontré que la protéine c-Myc est essentielle pour le développement au delà du jour embryonnaire E9.5. Les embryons c-Myc déficients sont plus petits que la normale et possèdent de nombreux défauts; en particulier ils ne peuvent établir un système hématopoietique embryonnaire primitif (Trumpp et al., 2001). Nous avons récemment découvert que le développement du placenta dépend de la présence de cMyc. Ceci permet de proposer que certains, sinon tous, les défauts embryonnaires puorraient dériver indirectement d'un défaut nutritionnel causé par la défaillance du placenta. Afin de répondre à cette question de manière génétique, nous avons utilisé l'allele conditionel c-mycflox (Trumpp et al., 2001) en combinaison avec l'allele Sox2-Cre (Hayashi et al., 2002). Celui-ci détermine l'expression de la récombinase Cre spécifiquement dans les cellules de l'épiblaste à partir de E6.5, tandis qu'il n'y a pas, ou seulement très peu, d'activité de la récombinase Cre dans les tissus extraembryonnaires.Alnsi, cette stratégie nous permet de générer des embryons sans c-Myc qui se développent en présence d'un compartment extraembryonnaire ou c-Myc est exprimé normalement (Sox2Cre;c-mycflox2) Ces embryons, Sox2Cre;c-mycflox2 se développent et grandissent normalement tout en formant un système vasculaire normal, mais meurent à E11.5 à cause d'un sévère manque de cellules hématopoïetiques. De façon très intéressante, la seule population qui semble être présente en nombre à peu près normal dans ces embryons est celle des précurseurs et des cellules souches. Les cellules qui forment cette population prolifèrent normalement mais ne peuvent pas former des colonies in vitro, ce qui montre que ces cellules ont perdu leur activité de cellules souches. Cependant, lorsque nous avons analysé ces cellules plus en détail en éxaminant l'expression des molécules d'intégrine nous avons découvert que l'integrine ß est sur-éxprimée à la surface des cellules c-Myc déficientes. Ceci pourrait indiquer un mécanisme par lequel c-Myc régule des molécules d'adhésion sur les cellules du sang. En conséquence, en absence de c-Myc, l'adhésion et la migration des cellules du sang de l'AGM (Aorte-Gonade-Mésonéphros) vers le foie de l'embryon, à travers le système vasculaire, est compromise. En outre, nous avons pu montrer que les hépatocytes du foie, qui constitue le site principal de formation des cellules hématopoïetiques pendant le développement, est sévèrement atteint dans des Sox2Cre;c-mycflox2 embryons. Ceci n'est pas du à un défaut propre aux cellules hépatiques qui ont perdu c-Myc, mais résulte plutôt de l'absence de cellules hématopoietïques qui normalement colonisent le foie à ce stade du développement. Ces résultats représentent la première preuve directe que le développement des hépatoblastes est dépendant de signaux provenant des cellules du sang. Summary The myc gene is one of the most frequently mutated oncogenes in human tumors. It is found to be mis-regulated in over 70% of all human cancers. However, our knowledge about its physiological role in mammalian development and adulthood remains limited. Recent work in our laboratory showed that c-Myc controls the balance between hematopoietic stem cell (HSC) self-renewal and differentiation in the adult mouse. This is likely due to the capacity of c-Myc to control entry and exit of HSCs from the bone marrow niche by regulating a number of cell adhesion molecules including N-cadherin (Wilson et al., 2004; Wilson and Trumpp 2006). During development knockout studies showed that c-Myc is required for embryonic development beyond embryonic day (E) 9.5. c-Myc deficient embryos are severely reduced in size and show multiple defects including the failure to establish a primitive hematopoietic system (Trumpp et al., 2001). Importantly, we recentry uncovered that placental development also seems to depend on normal c-Myc function, raising the possibility that some if not all of the embryonic defects observed could be mediated indirectly by a nutrition defect caused by placental failure. To address this possibility genetically, we took advantage of the conditional c-mycflox allele (Trumpp et al., 2001) in combination with the Sox2-Cre allele (Hayashi et al., 2002), in which Cre expression is specifically targeted to all epiblast cells by E6.5, while there is little or no Cre activity inextra-embryonic lineages. Thus, this strategy allows the generation of c-Myc deficient embryos, which develop within a normal c-Myc expressing extra-embryonic compartment (Sox2Cre;c-mycflox2) Such Sox2Cre;c-mycflox2 embryos develop and grow appropriately and form a normal vascular system but die at E11.5 due to a severe lack of blood cells. Interestingly, the only hematopoietic population that seems to be present in almost normal numbers in the embryo is the stem/progenitor cell population. Cells within this populatíon proliferate normal but can not give rise to hematopoietic colonies in vitro showing that functional hematopoietic stem cell (HSC) activity is lost. However, when we analyzed these phenotypic HSCs in more detail and examined integrin expression in mutant stem/progenitor cells, we observed that ß1-integrin is upregulated. This may point to a potential mechanism whereby c-Myc regulates adhesíon molecules on hematopoietic cells and thereby disturbs adhesion and migration from the AGM (aorta-gonads-mesonephros) through the vascular system to the liver. Furthermore, we uncovered that the fetal liver, the main site of hematopoietic expansion at that stage, is severely affected in Sox2Cre;c-mycflox2 embryos and that this is not due to a cell intrinsic defect of c-Myc deficient hepatocytes but rather due to the lack of hematopoietic cells that normally colonize the fetal liver at that stage of development. This provides first direct evidence that hepatoblast development depends on signals derived from blood cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the turn of the century the complete genome sequence of just one mouse strain, C57BL/6J, has been available. Knowing the sequence of this strain has enabled large-scale forward genetic screens to be performed, the creation of an almost complete set of embryonic stem (ES) cell lines with targeted alleles for protein-coding genes, and the generation of a rich catalog of mouse genomic variation. However, many experiments that use other common laboratory mouse strains have been hindered by a lack of whole-genome sequence data for these strains. The last 5 years has witnessed a revolution in DNA sequencing technologies. Recently, these technologies have been used to expand the repertoire of fully sequenced mouse genomes. In this article we review the main findings of these studies and discuss how the sequence of mouse genomes is helping pave the way from sequence to phenotype. Finally, we discuss the prospects for using de novo assembly techniques to obtain high-quality assembled genome sequences of these laboratory mouse strains, and what advances in sequencing technologies may be required to achieve this goal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growing awareness of cerebellar involvement in addiction is based on the cerebellum's intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid receptor type 1 receptors and enzymes that produce [diacylglycerol lipase alpha/beta (DAGLα/β) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD)] and degrade [monoacylglycerol lipase (MAGL) and fatty acid amino hydrolase (FAAH)] eCB} were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system [glutamate synthesizing enzymes liver-type glutaminase isoform (LGA) and kidney-type glutaminase isoform (KGA), metabotropic glutamatergic receptor (mGluR3/5), NMDA-ionotropic glutamatergic receptor (NR1/2A/2B/2C) and AMPA-ionotropic receptor subunits (GluR1/2/3/4)] and the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-arachidonylglycerol (2-AG) production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and glutamate systems. Repeated cocaine results in normalization of glutamate receptor expression, although sustained changes in eCB is observed. We suggest that cocaine-induced alterations to cerebellar eCB should be considered when analyzing the adaptations imposed by psychostimulants that lead to addiction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid bodies [lipid droplets (LBs)] are lipid-rich organelles involved in lipid metabolism, signalling and inflammation. Recent findings suggest a role for LBs in host response to infection; however, the potential functions of this organelle in Toxoplasma gondii infection and how it alters macrophage microbicidal capacity during infection are not well understood. Here, we investigated the role of host LBs in T. gondii infection in mouse peritoneal macrophages in vitro. Macrophages cultured with mouse serum (MS) had higher numbers of LBs than those cultured in foetal bovine serum and can function as a model to study the role of LBs during intracellular pathogen infection. LBs were found in association with the parasitophorous vacuole, suggesting that T. gondii may benefit from this lipid source. Moreover, increased numbers of macrophage LBs correlated with high prostaglandin E2 (PGE2) production and decreased nitric oxide (NO) synthesis. Accordingly, LB-enriched macrophages cultured with MS were less efficient at controlling T. gondii growth. Treatment of macrophages cultured with MS with indomethacin, an inhibitor of PGE2 production, increased the microbicidal capacity against T. gondii. Collectively, these results suggest that culture with MS caused a decrease in microbicidal activity of macrophages against T. gondii by increasing PGE2 while lowering NO production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The therapeutic activity of selective serotonin (5-HT) reuptake inhibitors (SSRIs) relies on long-term adaptation at pre- and post-synaptic levels. The sustained administration of SSRIs increases the serotonergic neurotransmission in response to a functional desensitization of the inhibitory 5-HT1A autoreceptor in the dorsal raphe. At nerve terminal such as the hippocampus, the enhancement of 5-HT availability increases brain-derived neurotrophic factor (BDNF) synthesis and signaling, a major event in the stimulation of adult neurogenesis. In physiological conditions, BDNF would be expressed at functionally relevant levels in neurons. However, the recent observation that SSRIs upregulate BDNF mRNA in primary cultures of astrocytes strongly suggest that the therapeutic activity of antidepressant drugs might result from an increase in BDNF synthesis in this cell type. In this study, by overexpressing BDNF in astrocytes, we balanced the ratio between astrocytic and neuronal BDNF raising the possibility that such manipulation could positively reverberate on anxiolytic-/antidepressant-like activities in transfected mice. Our results indicate that BDNF overexpression in hippocampal astrocytes produced anxiolytic-/antidepressant-like activity in the novelty suppressed feeding in relation with the stimulation of hippocampal neurogenesis whereas it did not potentiate the effects of the SSRI fluoxetine on these parameters. Moreover, overexpressing BDNF revealed the anxiolytic-like activity of fluoxetine in the elevated plus maze while attenuating 5-HT neurotransmission in response to a blunted downregulation of the 5-HT1A autoreceptor. These results emphasize an original role of hippocampal astrocytes in the synthesis of BDNF, which can act through neurogenesis-dependent and -independent mechanisms to regulate different facets of anxiolytic-like responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role played by different mammal species in the maintenance of Trypanosoma cruzi is not constant and varies in time and place. This study aimed to characterise the importance of domestic, wild and peridomestic hosts in the transmission of T. cruzi in Tauá, state of Ceará, Caatinga area, Brazil, with an emphasis on those environments colonised by Triatoma brasiliensis. Direct parasitological examinations were performed on insects and mammals, serologic tests were performed on household and outdoor mammals and multiplex polymerase chain reaction was used on wild mammals. Cytochrome b was used as a food source for wild insects. The serum prevalence in dogs was 38% (20/53), while in pigs it was 6% (2/34). The percentages of the most abundantly infected wild animals were as follows: Thrichomys laurentius 74% (83/112) and Kerodon rupestris 10% (11/112). Of the 749 triatomines collected in the household research, 49.3% (369/749) were positive for T. brasiliensis, while 6.8% were infected with T. cruzi (25/369). In captured animals, T. brasiliensis shares a natural environment with T. laurentius, K. rupestris, Didelphis albiventris, Monodelphis domestica, Galea spixii, Wiedomys pyrrhorhinos, Conepatus semistriatus and Mus musculus. In animals identified via their food source, T. brasiliensis shares a natural environment with G. spixii, K. rupestris, Capra hircus, Gallus gallus, Tropidurus oreadicus and Tupinambis merianae. The high prevalence of T. cruzi in household and peridomiciliar animals reinforces the narrow relationship between the enzootic cycle and humans in environments with T. brasiliensis and characterises it as ubiquitous.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural variation is variation in structure of DNA regions affecting DNA sequence length and/or orientation. It generally includes deletions, insertions, copy-number gains, inversions, and transposable elements. Traditionally, the identification of structural variation in genomes has been challenging. However, with the recent advances in high-throughput DNA sequencing and paired-end mapping (PEM) methods, the ability to identify structural variation and their respective association to human diseases has improved considerably. In this review, we describe our current knowledge of structural variation in the mouse, one of the prime model systems for studying human diseases and mammalian biology. We further present the evolutionary implications of structural variation on transposable elements. We conclude with future directions on the study of structural variation in mouse genomes that will increase our understanding of molecular architecture and functional consequences of structural variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Altered serine protease activity is associated with skin disorders in humans and in mice. The serine protease channel-activating protease-1 (CAP1; also termed protease serine S1 family member 8 (Prss8)) is important for epidermal homeostasis and is thus indispensable for postnatal survival in mice, but its roles and effectors in skin pathology are poorly defined. In this paper, we report that transgenic expression in mouse skin of either CAP1/Prss8 (K14-CAP1/Prss8) or protease-activated receptor-2 (PAR2; Grhl3(PAR2/+)), one candidate downstream target, causes epidermal hyperplasia, ichthyosis and itching. K14-CAP1/Prss8 ectopic expression impairs epidermal barrier function and causes skin inflammation characterized by an increase in thymic stromal lymphopoietin levels and immune cell infiltrations. Strikingly, both gross and functional K14-CAP1/Prss8-induced phenotypes are completely negated when superimposed on a PAR2-null background, establishing PAR2 as a pivotal mediator of pathogenesis. Our data provide genetic evidence for PAR2 as a downstream effector of CAP1/Prss8 in a signalling cascade that may provide novel therapeutic targets for ichthyoses, pruritus and inflammatory skin diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we introduce JULIDE, a software toolkit developed to perform the 3D reconstruction, intensity normalization, volume standardization by 3D image registration and voxel-wise statistical analysis of autoradiographs of mouse brain sections. This software tool has been developed in the open-source ITK software framework and is freely available under a GPL license. The article presents the complete image processing chain from raw data acquisition to 3D statistical group analysis. Results of the group comparison in the context of a study on spatial learning are shown as an illustration of the data that can be obtained with this tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In sandflies, the absence of the peritrophic matrix (PM) affects the rate of blood digestion. Also, the kinetics of PM secretion varies according to species. We previously characterised PpChit1, a midgut-specific chitinase secreted in Phlebotomus papatasi (PPIS) that is involved in the maturation of the PM and showed that antibodies against PpChit1 reduce the chitinolytic activity in the midgut of several sandfly species. Here, sandflies were fed on red blood cells reconstituted with naïve or anti-PpChit1 sera and assessed for fitness parameters that included blood digestion, oviposition onset, number of eggs laid, egg bouts, average number of eggs per bout and survival. In PPIS, anti-PpChit1 led to a one-day delay in the onset of egg laying, with flies surviving three days longer compared to the control group. Anti-PpChit1 also had a negative effect on overall ability of flies to lay eggs, as several gravid females from all three species were unable to lay any eggs despite having lived longer than control flies. Whereas the longer survival might be associated with improved haeme scavenging ability by the PM, the inability of females to lay eggs is possibly linked to changes in PM permeability affecting nutrient absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rat 1 fibroblasts transfected to express either the wild-type hamster alpha 1B-adrenergic receptor or a constitutively active mutant (CAM) form of this receptor resulting from the alteration of amino acid residues 288-294 to encode the equivalent region of the human beta 2-adrenergic receptor were examined. The basal level of inositol phosphate generation in cells expressing the CAM alpha 1B-adrenergic receptor was greater than for the wild-type receptor, The addition of maximally effective concentrations of phenylephrine or noradrenaline resulted in substantially greater levels of inositol phosphate generation by the CAM alpha 1B-adrenergic receptor, although this receptor was expressed at lower steady-state levels than the wild-type receptor. The potency of both phenylephrine and noradrenaline to stimulate inositol phosphate production was approx. 200-fold greater at the CAM alpha 1B-adrenergic receptor than at the wild-type receptor. In contrast, endothelin 1, acting at the endogenously expressed endothelin ETA, receptor, displayed similar potency and maximal effects in the two cell lines. The sustained presence of phenylephrine resulted in down-regulation of the alpha subunits of the phosphoinositidase C-linked, pertussis toxin-insensitive, G-proteins G9 and G11 in cells expressing either the wild-type or the CAM alpha 1B-adrenergic receptor. The degree of down-regulation achieved was substantially greater in cells expressing the CAM alpha 1B-adrenergic receptor at all concentrations of the agonist. However, in this assay phenylephrine displayed only a slightly greater potency at the CAM alpha 1B-adrenergic receptor than at the wild-type receptor. There were no detectable differences in the basal rate of G9 alpha/G11 alpha degradation between cells expressing the wild-type or the CAMalpha 1B-adrenergic receptor. In both cell lines the addition of phenylephrine substantially increased the rate of degradation of these G-proteins, with a greater effect at the CAM alpha 1B-adrenergic receptor. The enhanced capacity of agonist both to stimulate second-messenger production at the CAM alpha 1B-adrenergic receptor and to regulate cellular levels of its associated G-proteins by stimulating their rate of degradation is indicative of an enhanced stoichiometry of coupling of this form of the receptor to G9 and G11.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) constitute an important class of gene regulators. While models have been proposed to explain their appearance and expansion, the validation of these models has been difficult due to the lack of comparative studies. Here, we analyze miRNA evolutionary patterns in two mammals, human and mouse, in relation to the age of miRNA families. In this comparative framework, we confirm some predictions of previously advanced models of miRNA evolution, e.g. that miRNAs arise more frequently de novo than by duplication, or that the number of protein-coding gene targeted by miRNAs decreases with evolutionary time. We also corroborate that miRNAs display an increase in expression level with evolutionary time, however we show that this relation is largely tissue-dependent, and especially low in embryonic or nervous tissues. We identify a bias of tag-sequencing techniques regarding the assessment of breadth of expression, leading us, contrary to predictions, to find more tissue-specific expression of older miRNAs. Together, our results refine the models used so far to depict the evolution of miRNA genes. They underline the role of tissue-specific selective forces on the evolution of miRNAs, as well as the potential co-evolution patterns between miRNAs and the protein-coding genes they target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chagas disease, caused by Trypanosoma cruzi infection, is a zoonosis of humans, wild and domestic mammals, including dogs. In Panama, the main T. cruzi vector is Rhodnius pallescens, a triatomine bug whose main natural habitat is the royal palm, Attalea butyracea. In this paper, we present results from three T. cruzi serological tests (immunochromatographic dipstick, indirect immunofluorescence and ELISA) performed in 51 dogs from 24 houses in Trinidad de Las Minas, western Panama. We found that nine dogs were seropositive (17.6% prevalence). Dogs were 1.6 times more likely to become T. cruziseropositive with each year of age and 11.6 times if royal palms where present in the peridomiciliary area of the dog’s household or its two nearest neighbours. Mouse-baited-adhesive traps were employed to evaluate 12 peridomestic royal palms. All palms were found infested with R. pallescens with an average of 25.50 triatomines captured per palm. Of 35 adult bugs analysed, 88.6% showed protozoa flagellates in their intestinal contents. In addition, dogs were five times more likely to be infected by the presence of an additional domestic animal species in the dog’s peridomiciliary environment. Our results suggest that interventions focused on royal palms might reduce the exposure to T. cruzi infection.