982 resultados para wavelet packet decomposition
Resumo:
Maleic anhydride end capped poly(propylene carbonate) (PPC-MA) was blended with ethyl cellulose (EC) by casting from dichloromethane solutions. The thermotropic liquid crystallinity, thermal decomposition behavior, and aggregated structure were investigated by differential scanning calorimetry (DSC), thermogravimetry (TGA), and wide angle X-ray diffraction (WAXD). DSC exhibits thermotropic liquid crystallinity in the rich EC composition range. TGA shows that thermal decomposition temperatures were elevated upon interfusing EC into PPC-MA. WAXD corroborates that EC and PPC-MA/EC blend films cast from dilute dichloromethane solution possessed cholesteric liquid crystalline structure in the rich EC composition range, and that dilution of PPC-MA with EC increased the dimension of noncrystalline region, leading to a more ordered packed structure.
Resumo:
Discrete wavelets transform (DWT). was applied to noise on removal capillary electrophoresis-electrochemiluminescence (CE-ECL) electropherograms. Several typical wavelet transforms, including Haar, Daublets, Coiflets, and Symmlets, were evaluated. Four types of determining threshold methods, fixed form threshold, rigorous Stein's unbiased estimate of risk (rigorous SURE), heuristic SURE and minimax, combined with hard and soft thresholding methods were compared. The denoising study on synthetic signals showed that wave Symmlet 4 with a level decomposition of 5 and the thresholding method of heuristic SURE-hard provide the optimum denoising strategy. Using this strategy, the noise on CE-ECL electropherograms could be removed adequately. Compared with the Savitzky-Golay and Fourier transform denoising methods, DWT is an efficient method for noise removal with a better preservation of the shape of peaks.
Resumo:
The thermal decomposition mechanism of maleated poly(3-hydroxybutyrate) (PHB) was investigated by FTIR and H-1 NMR. The results of experiments showed that the random chain scission of maleated PHB obeyed the six-membered ring ester decomposition process. The thermal decomposition behavior of PHB and maleated PHB with different graft degree were studied by thermogravimetry (TGA) using various heating-up rates. The thermal stability of maleated PHB was evidently better than that of PHB. With increase in graft degree, the thermal decomposition temperature of maleated PHB gradually increased and then declined. Activation energy E. as a kinetic parameter of thermal decomposition was estimated by the Flynn-Wall-Ozawa and Kissinger methods, respectively. It could be seen that approximately equal values of activation energy were obtained by both methods.
Resumo:
Singular value decomposition - least squares (SVDLS), a new method for processing the multiple spectra with multiple wavelengths and multiple components in thin layer spectroelectrochemistry has been developed. The CD spectra of three components, norepinephrine reduced form of norepinephrinechrome and norepinephrinequinone, and their fraction distributions with applied potential were obtained in three redox processes of norepinephrine from 30 experimental CD spectra, which well explains electrochemical mechanism of norepinephrine as well as the changes in the CD spectrum during the electrochemical processes.
Resumo:
Two systems of mixed oxides, La2-xSrxCuO4 +/- lambda (0.0 less than or equal to x less than or equal to 1.0) and La(2-x)Tn(x)CuO(4 +/-) (lambda) (0.0 less than or equal to x less than or equal to 0.4), with K2NiF4 structure were prepared. The average valence of Cu ions and oxygen nonstoichiometry (lambda) were determined by means of chemical analysis. Meanwhile, the adsorption and activation of nitrogen monoxide (NO) and the mixture of NO + CO over the mixed oxide catalysts were studied by means of mass spectrometry temperature-programmed desorption (MS-TPD). The catalytic behaviors in the reactions of direct decomposition of NO and its reduction by CO were investigated, and were discussed in relation with average valence of Cu ions, A and the activation and adsorption of reactant molecules. It has been proposed that both reactions proceed by the redox mechanism, in which the oxygen vacancies and the lower-valent Cu ions play important roles in the individual step of the redox cycle. Oxygen vacancy is more significant for NO decomposition than for NO + CO reaction. For the NO + CO reaction, the stronger implication of the lower-valent Cu ions or oxygen vacancy depends on reaction temperature and the catalytic systems (Sr- or Th-substituted). (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, an introduction of wavelet transform and multi-resolution analysis is presented. We describe three data compression methods based on wavelet transform for spectral information,and by using the multi-resolution analysis, we compressed spectral data by Daubechies's compactly supported orthogonal wavelet and orthogonal cubic B-splines wavelet, Using orthogonal cubic B-splines wavelet and coefficients of sharpening signal are set to zero, only very few large coefficients are stored, and a favourable data compression can be achieved.
Resumo:
A series of LnSrNiO(4)(A(2)BO(4), Ln = La, Pr, Nd, Sm, Gd) mixed oxides with K2NiF4 structure, in which A-site(Sr) was partly substituted by individual light rare earth element, was prepared. The solid state physico-chemical properties including crystal structure, defect structure, IR spectrum, valence state of H-site ion, nonstoichiometric oxygen, oxygenous species, the properties of oxidation and reduction etc. as well as the catalytic behavior for NO decomposition on these mixed oxides were investigated. The results show that all of these mixed oxide catalysts have high activity for the direct decomposition of NO(at 900 degrees C the conversion of NO is more than 90%). The effect of the substitution of light rare earth elements at A-site on catalytic behavior for NO decomposition was elucidated.
Resumo:
beta, beta-1, 3-Piopylenedithio-alpha, beta-unsaturated arylketones 2 via chemoselective 1,2-addition with allyl or benzyl Grignard reagents afforded the corresponding carbinols 3 and 4. Catalysed by silica gel, the carbinols 3 and 4 were converted to the beta,gamma-unsaturated arylketones 5, 6. The mechanism and reaction condition were discussed.
Resumo:
Two systems of La2-xSrxCuO4+/-lambda and La2-xThxCuO4+/-lambda, mixed oxides with K2NiF4 structure were synthesized. The compositions and structures of the catalysts were characterized by means of XRD, XPS, chemical analysis and so on. The catalytic behavior for the direct decomposition of NO has been investigated. The results show that the catalytic activity is closely related to the oxygen vacancy and lower valence metallic ion in the direct decomposition of NO. The presence of oxygen vacancy is necessary for mixed oxide to have steady activity in NO decomposition.
Resumo:
Rare earth complexes with phenylacetic acid (LnL(3) . nH(2)O, Ln is Ce, Nd, Pr, Ho, Er, Yb and Y, L is phenylacetate, n = 1-2) were prepared and characterized by elemental analysis, IR spectroscopy, chemical analysis, and X-ray crystal structure. The mechanism of thermal decomposition of the complexes was studied by means of TG-DTG, DTA and DSC. The activation energy and enthalpy change for the dehydration and melting processes were determined.
Resumo:
The nitrogen oxides (NO_x) are serious pollutants in earth's atmosphere in the sensethat they are one of the main sources to cause the acid rain. The removal of NO_x is oneof the key research topics in the protection of environmen.
Resumo:
The mixed oxides LaNiO3, La0.1Sr0.9NiO3, La2NiO4 and LaSrNiO4 were prepared and used as catalysts for the direct decomposition of NO. The catalysts were characterized by means of XRD, XPS, O-2-TPD, NO-TPD and chemical analysis. By comparing the physico-chemical properties and catalytic activity for NO decomposition, a conclusion could be drawn as follows. The direct decomposition of NO over perovskite and related mixed oxide catalysts follows a redox mechanism. The lower valent metal ions Ni2+ and disordered oxygen vacancies seem to be the active sites in the redox process. The oxygen vacancy plays an important role favorable for the adsorption and activation of NO molecules on one hand and on the other hand for increasing the mobility of lattice oxygen which is beneficial to the reproduction of active sites. The presence of oxygen vacancies is one of the indispensable factors to give the mixed oxides a steady activity for NO decomposition.
Resumo:
Nine tetrabasic tungstovanadophosphate heteropoly rare earth element complexes with Dawson structure were synthesized. Their general molecular formulas are K15H4[Ln . (P2W16VO61)(2)] . xH(2)O(Ln = La3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Dy3+, Yb3+). Their structures and properties were investigated by IR, UV, NMR, ESR, XRD, TG-DTA. The results showed that the series of complexes have the same structure as K-16[Ce(P2W17O61)(2)] . 50H(2)O. At the same time, the catalytic activity of the complexes for H2O2-decomposition was also investigated.
Resumo:
A series of perovskite-like mixed oxides La(2-x)Sr(x)MO(4+lambda) (M=Cu, Co,Ni; x=0,1) was prepared and characterized using X-ray powder diffraction. The catalytic properties of these catalysts in NO decomposition were tested. The results showed that LaSrNiO4-lambda with K2NiF4 structure is very active and stable for the decomposition of NO.