960 resultados para vertical extensions
Ambient vertical flow in long-screen wells: a case study in the Fontainebleau Sands Aquifer (France)
Resumo:
Cloud computing is a new development that is based on the premise that data and applications are stored centrally and can be accessed through the Internet. Thisarticle sets up a broad analysis of how the emergence of clouds relates to European competition law, network regulation and electronic commerce regulation, which we relate to challenges for the further development of cloud services in Europe: interoperability and data portability between clouds; issues relating to vertical integration between clouds and Internet Service Providers; and potential problems for clouds to operate on the European Internal Market. We find that these issues are not adequately addressed across the legal frameworks that we analyse, and argue for further research into how to better facilitate innovative convergent services such as cloud computing through European policy – especially in light of the ambitious digital agenda that the European Commission has set out.
Resumo:
This paper discusses several issues of Service-Centric Networking (SCN) as an extension of the Information-Centric Networking (ICN) paradigm. SCN allows extended caching, where not exactly the same content as requested can be read from caches, but similar content can be used to produce the content requested, e.g., by filtering or transcoding. We discuss the issue of naming and routing for general dynamic services for both tightly coupled and decoupled ICN approaches. Challenges and solutions for service management are identified, in particular for composed services, which allow distributed in-network processing of service requests. We introduce the term Software-Defined Service-Centric Networking as an extension of Software-Defined Networking. A prototype implementation for SCN proofs its validity and feasibility and underlines its potential benefits.
Resumo:
Despite the astounding success of the fast fashion retailers, the management practices leading to these results have not been subject to extensive research so far. Given this background, we analyze the impact of information sharing and vertical integration on the performance of 51 German apparel companies. We find that the positive impact of vertical integration is mediated by information sharing, i.e. that the ability to improve the information flow is a key success factor of vertically integrated apparel supply chains. Thus, the success of an expansion strategy based on vertical integration critically depends on effective ways to share logistical information.
Resumo:
Neodymium (Nd) isotopes are an important geochemical tool to trace the present and past water mass mixing as well as continental inputs. The distribution of Nd concentrations in open ocean surface waters (0�100 m) is generally assumed to be controlled by lateral mixing of Nd from coastal surface currents and by removal through reversible particle scavenging. However, using 228Ra activity as an indicator of coastal water mass influence, surface water Nd concentration data available on key oceanic transects as a whole do not support the above scenario. From a global compilation of available data, we find that more stratified regions are generally associated with low surface Nd concentrations. This implies that upper ocean vertical supply may be an as yet neglected primary factor in determining the basin-scale variations of surface water Nd concentrations. Similar to the mechanism of nutrients supply, it is likely that stratification inhibits vertical supply of Nd from the subsurface thermocline waters and thus the magnitude of Nd flux to the surface layer. Consistently, the estimated required input flux of Nd to the surface layer to maintain the observed concentrations could be nearly two orders of magnitudes larger than riverine/dust flux, and also larger than the model-based estimation on shelf-derived coastal flux. In addition, preliminary results from modeling experiments reveal that the input from shallow boundary sources, riverine input, and release from dust are actually not the primary factors controlling Nd concentrations most notably in the Pacific and Southern Ocean surface waters.
Resumo:
When tilted sideways participants misperceive the visual vertical assessed by means of a luminous line in otherwise complete dark- ness. A recent modeling approach (De Vrijer et al., 2009) claimed that these typical patterns of errors (known as A- and E-effects) could be explained by as- suming that participants behave in a Bayes optimal manner. In this study, we experimentally manipulate participants’ prior information about body-in-space orientation and measure the effect of this manipulation on the subjective visual vertical (SVV). Specifically, we explore the effects of veridical and misleading instructions about body tilt orientations on the SVV. We used a psychophys- ical 2AFC SVV task at roll tilt angles of 0 degrees, 16 degrees and 4 degrees CW and CCW. Participants were tilted to 4 degrees under different instruction conditions: in one condition, participants received veridical instructions as to their tilt angle, whereas in another condition, participants received the mis- leading instruction that their body position was perfectly upright. Our results indicate systematic differences between the instruction conditions at 4 degrees CW and CCW. Participants did not simply use an ego-centric reference frame in the misleading condition; instead, participants’ estimates of the SVV seem to lie between their head’s Z-axis and the estimate of the SVV as measured in the veridical condition. All participants displayed A-effects at roll tilt an- gles of 16 degrees CW and CCW. We discuss our results in the context of the Bayesian model by De Vrijer et al. (2009), and claim that this pattern of re- sults is consistent with a manipulation of precision of a prior distribution over body-in-space orientations. Furthermore, we introduce a Bayesian Generalized Linear Model for estimating parameters of participants’ psychometric function, which allows us to jointly estimate group level and individual level parameters under all experimental conditions simultaneously, rather than relying on the traditional two-step approach to obtaining group level parameter estimates.
Resumo:
Cold surface temperatures, reflecting Scotian Shelf origins and local tidal mixing, serve as a tracer of the Eastern Maine Coastal Current and its offshore extensions, which appear episodically as cold plumes erupting from the eastern Maine shelf. A cold water plume emanating from the Eastern Maine Coastal Current in May 1994 was investigated using advanced very high resolution radiometer (AVHRR) imagery, shipboard surveys of physical and biochemical properties, and satellite-tracked drifters. Evidence is presented that suggests that some of the plume waters were entrained within the cyclonic circulation over Jordan Basin, while the major portion participated in an anticyclonic eddy at the distal end of the plume. Calculations of the nitrate transported offshore by the plume show that this feature can episodically export significant quantities of nutrients from the Eastern Maine Coastal Current to offshore regions that are generally nutrient depleted during spring-summer. A series of AVHRR images is used to document the seasonal along-shelf progression of the coastal plume separation point. We speculate on potential causes and consequences of plume separation from the coastal current and suggest that this feature may be an important factor influencing the patterns and overall biological productivity of the eastern Gulf of Maine.
Resumo:
For a three-dimensional vertically-oriented fault zone, we consider the coupled effects of fluid flow, heat transfer and reactive mass transport, to investigate the patterns of fluid flow, temperature distribution, mineral alteration and chemically induced porosity changes. We show, analytically and numerically, that finger-like convection patterns can arise in a vertically-oriented fault zone. The onset and patterns of convective fluid flow are controlled by the Rayleigh number which is a function of the thermal properties of the fluid and the rock, the vertical temperature gradient, and the height and the permeability of the fault zone. Vigorous fluid flow causes low temperature gradients over a large region of the fault zone. In such a case, flow across lithological interfaces becomes the most important mechanism for the formation of sharp chemical reaction fronts. The degree of rock buffering, the extent and intensity of alteration, the alteration mineralogy and in some cases the formation of ore deposits are controlled by the magnitude of the flow velocity across these compositional interfaces in the rock. This indicates that alteration patterns along compositional boundaries in the rock may provide some insights into the convection pattern. The advective mass and heat exchanges between the fault zone and the wallrock depend on the permeability contrast between the fault zone and the wallrock. A high permeability contrast promotes focussed convective flow within the fault zone and diffusive exchange of heat and chemical reactants between the fault zone and the wallrock. However, a more gradual permeability change may lead to a regional-scale convective flow system where the flow pattern in the fault affects large-scale fluid flow, mass transport and chemical alteration in the wallrocks
Resumo:
INTRODUCTION Though developed for thoracic insufficiency syndrome, the spinal growth-stimulating potential and the ease of placement of vertical expandable titanium ribs (VEPTRs) has resulted in their widespread use for early-onset spine deformity. Observation of implant-related ossifications warrants further assessment, since they may be detrimental to the function-preserving non-fusion strategy. PATIENTS AND METHODS Radiographs (obtained pre and post index procedure, and at 4-year follow-up) and the records of 65 VEPTR patients from four paediatric spine centres were analysed. Ossifications were classified as type I (at anchor points), type II (along the central part) or type III (re-ossification after thoracostomy). RESULTS The average age at the index procedure was 6.5 years (min 1, max 13.7). The most prevalent spine problem was congenital scoliosis (37) with rib fusions (34), followed by neuromuscular and syndromic deformities (13 and 8, respectively). Idiopathic and secondary scoliosis (e.g. after thoracotomy) were less frequent (3 and 4, respectively). Forty-two of the 65 (65 %) patients showed ossifications, half of which were around the anchors. Forty-five percent (15/33) without pre-existing rib fusions developed a type II ossification along the implant. Re-ossifications of thoracostomies were less frequent (5/34, 15 %). The occurrence of ossifications was not associated with patient-specific factors. CONCLUSIONS Implant-related ossifications around VEPTR are common. In contrast to harmless bone formation around anchors, ossifications around the telescopic part and the rod section are troublesome in view of their possible negative impact on chest cage compliance and spinal mobility. This potential side effect needs to be considered during implant selection, particularly in patients with originally normal thoracic and spinal anatomy.
Resumo:
Recent research in cognitive sciences shows a growing interest in spatial-numerical associations. The horizontal SNARC (spatial-numerical association of response codes) effect is defined by faster left-sided responses to small numbers and faster right-sided responses to large numbers in a parity judgment task. In this study we investigated whether there is also a SNARC effect for upper and lower responses. The grounded cognition approach suggests that the universal experience of "more is up" serves as a robust frame of reference for vertical number representation. In line with this view, lower hand responses to small numbers were faster than to large numbers (Experiment 1). Interestingly, the vertical SNARC effect reversed when the lower responses were given by foot instead of the hand (Experiments 2, 3, and 4). We found faster upper (hand) responses to small numbers and faster lower (foot) responses to large numbers. Additional experiments showed that spatial factors cannot account for the reversal of the vertical SNARC effect (Experiments 4 and 5). Our results question the view of "more is up" as a robust frame of reference for spatial-numerical associations. We discuss our results within a hierarchical framework of numerical cognition and point to a possible link between effectors and number representation.