981 resultados para uptake kinetics
Resumo:
The effects of diluents, temperature, acidity, and ionic strength of the aqueous phase on the interfacial properties of DEHEHP have been extensively investigated using the Du Nouy ring method. In addition, the effect of cerium(IV) concentration loaded in the organic phase on the interfacial tension has also been studied. With the increase of DEHEHP concentration, the value of interfacial tension (gamma) decreases in the studied system, which shows that DEHEHP has interfacial activity as a kind of surfactant. The surface excess at the saturated interface (Gamma(max)) and the minimum bulk concentration of the extractant necessary to saturate the interface (C-min) under the different conditions are calculated according to two adsorption equations such as the Gibbs and Szyszkowski functions to be presented in comprehensive tables and figures. The relationship between the interfacial activity of DEHEHP and cerium(IV) extraction kinetics by DEHEHP has been discussed by considering different factors such as the effects of diluents and temperature. However, the interfacial activity parameter of extractant only is a qualitative parameter, but cannot provide strong enough evidence to quantitatively explain the relationship between extraction kinetics and interfacial properties of an extractant.
Resumo:
Graft copolymerization in the molten state is of fundamental importance as a probe of chemical modification and reactive compatibilization. However, few grafting kinetics studies on reactive extrusion were carried out for the difficulties as expected. In this work, the macromolecular peroxide-induced grafting of acrylic acid and methyl methacrylate onto linear low density polyethylene by reactive extrusion was chosen as the model system for the kinetics study; the samples were taken out from the barrel at five ports along screw axis and analyzed by FTIR, H-1 NMR, and ESR. For the first time, the time-evolution of reaction rate, the reaction order, and the activation energy of graft copolymerization and homopolymerization in the twin screw extruder were directly obtained. On the basis of these results, the general reaction mechanism was tentatively proposed. It was demonstrated that an amount of chain propagation free radicals could keep alive for several minutes even the peroxides completely decomposed and the addition of monomer to polymeric radicals was the rate-controlled step for the graft copolymerization.
Resumo:
Studies have been made on the kinetics of ytterbium(III) with bis-(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272, HA) in n-heptane using a constant interfacial cell with laminar flow. The stiochiometry and the equilibrium constant of the extracted complex formation reaction between Yb3+ and Cyanex 272 are determined. The extraction rate is dependent of the stirring rate. This fact together with the Ea value suggests that the mass transfer process is a mixed chemical reaction-diffusion controlled at lower temperature, whereas it is entirely diffusion controlled at higher temperature. The rate equations for the ytterbium extraction with Cyanex 272 have been obtained. The rate-determining step is also made by predictions derived from interfacial reaction models, and through the approximate solutions of the flux equation, diffusion parameters and thickness of the diffusion film have been calculated.
Resumo:
The yttrium(III) extraction kinetics and mechanism with bis-(2,4,4-trimethyl-pentyl) phosphinic acid (Cyanex 272, HA) dissolved in heptane have been investigated by constant interfacial cell with laminar flow. The data has been analyzed in terms of pseudo-first order constants. Studies on the effects of stirring rate, temperature, acidity in aqueous phase, and extractant concentration on the extraction rate show that the extraction regime is dependent on the extraction conditions. The plot of interfacial area on the rate has shown a linear relationship. This fact together with the strong surface activity of Cyanex 272 at heptane-water interfaces has made the interface the most probable location for the chemical reactions. The forward, reverse rate equations and extraction rate constant for the yttrium extraction with Cyanex 272 have been obtained under the experimental conditions. The rate-determining step has been also predicted from interfacial reaction models. The predictions have been found to be in good agreement with the rate equations obtained from experimental data, confirming the basic assumption that the chemical reaction is located at the liquid-liquid interface.
Resumo:
The interfacial tension is measured for Cyanex 302 in heptane and adsorption parameters are calculated according to Gibbs equation and Szyskowski isotherm. The results indicate that Cyanex 302 has a high interfacial activity, allowing easy extraction reaction to take place at the liquid-liquid interface. The extraction kinetics of yttrium(III) with Cyanex 302 in heptane are investigated by a constant interfacial cell with laminar flow. The effects of stirring rate, temperature and specific interfacial area on the extraction rate are discussed. The results suggest that the extraction kinetics is a mixed regime with film diffusion and an aqueous one-step chemical reaction proposed to be the rate-controlling step. Assuming the mass transfer process can be formally treated as a pseudo-first-order reversible reaction with respect to the metal cation, the rate equation for the extraction reaction of yttrium(III) with Cyanex 302 at pH <5 is obtained as follows:R-f = 10(-7.85)[Y(OH)(2)(+)]((a))[H(2)A(2)]((o))(1.00)[H+]((a))(-1.00)Diffusion parameters and rate constants are calculated through approximate solutions of the flux equation.
Resumo:
Kinetics and mechanism of stripping of yttrium(III) previously extracted by mixtures of bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272, HA), and 2-ethylhexyl phosphonic acid mono-2-ethylhexl ester (P507, HB) dissolved in heptane have been investigated by constant interfacial-area cell by laminar flow. The corresponding equilibrium stripping equation and equilibrium constant were obtained. The studies of effects of the stirring rate and temperature on the stripping rate show that the stripping regime is dependent on the stripping conditions. The plot of interfacial area on the rate has shown a linear relationship. This fact together with the strong surface activity of mixtures of Cyanex 272 and P507 at heptane-water interfaces makes the interface the most probable locale for the chemical reactions. The stripping rate constant is obtained, and the value is compared with that of the system with Cyanex 272 and P507 alone. It is concluded that the stripping ability with the mixtures is easier than that of P507 due to lower the activation energy of the mixtures. The stripping rate equation has also been obtained, and the rate-determining steps are the two-step interfacial chemical reactions as predicted from interfacial reaction models.
Resumo:
Studies of the extraction kinetics of cerium(IV) into n-heptane solutions of di(2-ethylhexyl)-2-ethylhexyl phosphonate DEHEHP from HNO3-HF solutions have been carried out using a constant interfacial cell with laminar flow. The experimental hydrodynamic conditions were chosen so that the contribution of diffusion to the measured rate of reaction was minimized. The data were analyzed in terms of pseudo-first order constants. The effects of the stirring rate, specific interfacial area, and temperature on the extraction rate showed that the most probable reaction zone is in the aqueous homogeneous phase. The results were compared with those of the system without HF. It was concluded that the presence of HF decreases the extraction rate of cerium. The addition of HF increases the activation energy for the forward reaction from 21.2 to 55.3 kJ/mol and for the reverse process from 57.9 to 79.0 kJ/mol. According to the experimental data correlated as a function of the concentration of the relevant species involved in the extraction reaction, the corresponding rate equation was deduced as follows:-d[Ce]/dt = k[Ce] center dot B-0.62 center dot HF-0.58 center dot [NO3-](0.57)
Resumo:
The ytterbium(III) extraction kinetics and mechanism with mixtures of bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex272) and 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (P507) dissolved in heptane have been investigated by constant interfacial cell with laminar flow. The effects of the stirring rate, temperature, extractant concentration, and pH on the extraction with mixtures of Cyanex272 and P507 have been studied. The results are compared with those of the system with Cyanex272 or P507 alone. It is concluded that the Yb(III) extraction rate is enhanced with mixtures extractant of Cyanex272 and P507 according to their values of the extraction rate constant, which is due to decreasing the activation energy of the mixtures. At the same time, the mixtures exhibits no synergistic effects for Y(III), which provides better possibilities for Yb(III) and Y(III) separations at a proper conditions than anyone alone. Moreover, thermodynamic extraction separation Yb(III) and Y(III) by the mixtures has been discussed, which agrees with kinetics results. Extraction rate equations have also been obtained, and through the approximate solutions of the flux equation, diffusion parameters and thickness of the diffusion film have been calculated.
Resumo:
The crystallization kinetics and the development of lamellar structure during the isothermal crystallization of poly (epsilon-caprolactone) (PCL) were investigated by means of differential scanning calorimetry (DSC) and real-time synchrotron small angle X-ray scattering (SR-SAXS) techniques, respectively. The Avrami analysis was performed to obtain the kinetics parameters. The value of Avrami index, n, is about 3, demonstrating a three-dimensional spherulitic growth on heterogeneous nuclei in the process of isothermal crystallization. The activation energy and the surface free energy of chain folding for isothermal crystallization were determined according to the Arrhenius equation and Hoffman-Lauritzen theory, respectively. In the process of nonisothermal crystallization of PCL, the value of Avrami index, n, is about 4, which demonstrates a three-dimensional spherulitic growth on homogeneous nuclei. In addition, lamellar parameters were obtained from the analysis of SR-SAXS data.
Resumo:
Macrokinetic models, namly the modified Avrami, Ozawa and Zibicki models, were applied to study the non-isothermal melt crystallization process of PET/PEN/DBS blends by DSC measurement. The modified Avrami model was found to describe the experimental data fairly well. With the cooling rates in the range from 5 to 20 K/min, Ozawa model could be well used to describe the early stages of crystallization. However, Ozawa model did not fit the polymer blends during the late stages of crystallization, because it ignored the influence of secondary crystallization. The crystallization ability of the blends decreases with increasing the DBS content from analysis by using Ziabicki kinetic model, which is similar to the results based on calculation of the effective energy barrier of the blends.
Resumo:
A novel mimic TeHA was synthesized by modifying hyaluronic acid (HA) with tellurium, whose function is similar to that of glutathione peroxidase (GPX). The structure of TeHA was characterized by means of infrared spectroscopy and nuclear magnetic resonance spectroscopy, showing that the target Te is located at -CH2OH of the N-acetyl-D-glucosamine of HA. The activity of TeHA is 163.6 U/mu mol according to Wilson's method. In contrast to other mimics, TeHA displays a high activity. Moreover, TeHA can use many hydroperoxides as substrates, such as H2O2, cumenyl hydroperoxide, and tert-butyl hydroperoxide, and cumenyl hydroperoxide is the optimal substrate. A ping-pong mechanism was deduced for the reduction reactions catalyzed by TeHA according to the steady-state kinetic studies.
Resumo:
A novel mimic was synthesized by modifying hyaluronic acid (HA) with tellurium, whose function is similar to that of glutathione peroxidase (GPX). The structure of TeHA was characterized by means of IR and NMR, the target-Te was located at -CH2OH of the N-acetyl-D-glucosamine of HA. The H2O2 reducing activity of TeHA, by glutathione (GSH), was 163.6 U/mu mol according to Wilson's method. In contrast to other mimics, TeHA displayed the highest activity. Moreover, TeHA accepted many hydroperoxides as its substrates, such as H2O2, cumenyl hydroperoxide (CuOOH) and tert-butyl hydroperoxide (t-BuOOH), and CuOOH was the optimal substrate of TeHA. A ping-pong mechanism was observed in the steady-state kinetic studies of the reactions catalyzed by TeHA.
Resumo:
Isothermal crystallization, subsequent melting behavior and non-isothermal crystallization of nylon 1212 samples have been investigated in the temperature range of 160-171 degreesC using a differential scanning calorimeter (DSC). Subsequent DSC scans of isothermally crystallized samples exhibited three melting endotherms. The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and non-isothermal crystallizations of nylon 1212. The Avrami exponent n was evaluated, and was found to be in the range of 1.56-2.03 for isothermal crystallization, and of 2.38-3.05 for non-isothermal crystallization. The activation energies (DeltaE) were determined to be 284.5 KJ/mol and 102.63 KJ/mol, respectively, for the isothermal and non-isothermal crystallization processes by the Arrhenius' and the Kissinger's methods.
Resumo:
In order to improve its thermal stability, poly(propylene carbonate)(PPC) was end-capped by different active agents. Thermogravimetric data show that the degradation temperature of uncapped PPC was lower than that of end-capped PPC. The kinetic parameters of thermal degradation of uncapped and end-capped PPC were calculated according to Chang's method. The results show that different mechanisms operate during the whole degradation temperature range for uncapped PPC. In the first stage, chain unzipping dominates the degradation. With increasing temperature, competing multi-step reactions occur. In the last stage, random chain scission plays an important role in degradation. For end-capped PPC, random chain scission dominates the whole degradation process.
Resumo:
Analysis of the isothermal and nonisothermal transitions of hexagonal crystal formation from the melt (transition 1) and of monoclinic crystal formation from hexagonal crystals (transition 2) for trans-1,4-polybutadiene (TPBD) was carefully carried out by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). Isothermal transitions I and 2 are described by Avrami exponents (n) of approximate to1, whereas nonisothermal transitions I and 2 are described by n approximate to 4. These different eta values indicate that different crystallization mechanisms took place for different crystallization driving forces under isothermal and nonisothermal crystallization. The Ozawa equation was also used to analyze the nonisothermal crystallization data. For transition I at lower temperature, the Ozawa equation fits the data well; however, at higher temperature, there is an inflection that shifts to lower crystallinity with increasing temperature. Inflections are also observed with the Ozawa analysis for transition 2. Furthermore, the crystallinities at the turning points are almost in the same range as those determined by Avrami analysis for nonisothermal transitions I and 2, which suggests that the Ozawa analysis inflections are due to secondary crystallization. However, TEM revealed no morphology discrepancy between the TPBD hexagonal crystals formed from melt by isothermal and nonisothermal crystallization.