897 resultados para type-1 cytokines
Resumo:
AIMS/HYPOTHESIS: Chronic exposure of pancreatic beta cells to proinflammatory cytokines leads to impaired insulin secretion and apoptosis. ARE/poly(U)-binding factor 1 (AUF1) belongs to a protein family that controls mRNA stability and translation by associating with adenosine- and uridine-rich regions of target messengers. We investigated the involvement of AUF1 in cytokine-induced beta cell dysfunction. METHODS: Production and subcellular distribution of AUF1 isoforms were analysed by western blotting. To test for their role in the control of beta cell functions, each isoform was overproduced individually in insulin-secreting cells. The contribution to cytokine-mediated beta cell dysfunction was evaluated by preventing the production of AUF1 isoforms by RNA interference. The effect of AUF1 on the production of potential targets was assessed by western blotting. RESULTS: MIN6 cells and human pancreatic islets were found to produce four AUF1 isoforms (p42>p45>p37>p40). AUF1 isoforms were mainly localised in the nucleus but were partially translocated to the cytoplasm upon exposure of beta cells to cytokines and activation of the ERK pathway. Overproduction of AUF1 did not affect glucose-induced insulin secretion but promoted apoptosis. This effect was associated with a decrease in the production of the anti-apoptotic proteins, B cell leukaemia/lymphoma 2 (BCL2) and myeloid cell leukaemia sequence 1 (MCL1). Silencing of AUF1 isoforms restored the levels of the anti-apoptotic proteins, attenuated the activation of the nuclear factor-κB (NFκB) pathway, and protected the beta cells from cytokine-induced apoptosis. CONCLUSIONS/INTERPRETATION: Our findings point to a contribution of AUF1 to the deleterious effects of cytokines on beta cell functions and suggest a role for this RNA-binding protein in the early phases of type 1 diabetes.
Resumo:
Type I diabetes mellitus (insulin-dependent DM = IDDM) is a chronic disease characterized by specific destruction of pancreatic beta cells, resulting in an absolute lack of insulin. Immune mechanisms, genetic susceptibility, and environmental factors are all implicated in the pathogenesis of Type 1 diabetes. This study was aimed at determining the efficiency of cytokines, natural killer (NK) cells in the pathophysiology of IDDM. Therefore, we evaluated the plasma levels of cytokines by specific enzyme-linked immunosorbent assay (ELISA) and the cytotoxicity activity of NK cells by anti-candididal index in rats with type I diabetes. We found that the cytotoxicity activity of NK cells in IDDM groups significantly decreased compared to the control groups. The levels of interferon-g (IFN-g) in IDDM groups were slightly higher than in healthy controls. These results indicate that the changes of T H1 type cytokines such as IFN-g and NK cell activity can play a role in the etiology of IDDM. The data may provide new strategies for the treatment of IDDM.
Resumo:
OBJECTIVE: Interleukin-1 (IL-1) mediates ischemia-reperfusion injury and graft inflammation after heart transplantation. IL-1 affects target cells through two distinct types of transmembrane receptors, type-1 receptor (IL-1R1), which transduces the signal, and the non-signaling type-2 receptor (IL-1R2), which acts as a ligand sink that subtracts IL-1beta from IL-1R1. We analyzed the efficacy of adenovirus (Ad)-mediated gene transfer of a soluble IL-1R2-Ig fusion protein in delaying cardiac allograft rejection and the mechanisms underlying the protective effect. METHODS: IL-1 inhibition by IL-1R2-Ig was tested using an in vitro functional assay whereby endothelial cells preincubated with AdIL-1R2-Ig or control virus were stimulated with recombinant IL-1beta or tumor necrosis factor-alpha (TNF-alpha), and urokinase-type plasminogen activator (u-PA) induction was measured by zymography. AdIL-1R2-Ig was delivered to F344 rat donor hearts ex vivo, which were placed in the abdominal position in LEW hosts. Intragraft inflammatory cell infiltrates and proinflammatory cytokine expression were analyzed by immunohistochemistry and real-time reverse transcriptase-polymerase chain reaction (RT-PCR), respectively. RESULTS: IL-1R2-Ig specifically inhibited IL-1beta-induced u-PA responses in vitro. IL-1R2-Ig gene transfer reduced intragraft monocytes/macrophages and CD4(+) cell infiltrates (p<0.05), TNF-alpha and transforming growth factor-beta (TGF-beta) expression (p<0.05), and prolonged graft survival (15.6+/-5.7 vs 10.3+/-2.5 days with control vector and 10.1+/-2.1 days with buffer alone; p<0.01). AdIL-1R2-Ig combined with a subtherapeutic regimen of cyclosporin A (CsA) was superior to CsA alone (19.4+/-3.0 vs 15.9+/-1.8 days; p<0.05). CONCLUSIONS: Soluble IL-1 type-2 receptor gene transfer attenuates cardiac allograft rejection in a rat model. IL-1 inhibition may be useful as an adjuvant therapy in heart transplantation.
Resumo:
Human T lymphotropic virus type 1 (HTLV-1) is the causal agent of myelopathy/tropical spastic paraparesis (HAM/TSP), a disease mediated by the immune response. HTLV-1 induces a spontaneous proliferation and production of pro-inflammatory cytokines by T cells, and increasing interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) levels are potentially involved in tissue damage in diseases related to HTLV-1. This exaggerated immune response is also due to an inability of the natural regulatory mechanisms to down-modulate the immune response in this group of patients. TNF-α inhibitors reduce inflammation and have been shown to improve chronic inflammatory diseases in clinical trials. The aim of this study was to evaluate the ability of pentoxifylline, forskolin, rolipram, and thalidomide to decrease in vitro production of TNF-α and IFN-γ in cells of HTLV-1-infected subjects. Participants of the study included 19 patients with HAM/TSP (mean age, 53 ± 11; male:female ratio, 1:1) and 18 HTLV-1 carriers (mean age, 47 ± 11; male:female ratio, 1:2.6). Cytokines were determined by ELISA in supernatants of mononuclear cell cultures. Pentoxifylline inhibited TNF-α and IFN-γ synthesis with the minimum dose used (50 µM). The results with forskolin were similar to those observed with pentoxifylline. The doses of rolipram used were 0.01-1 µM and the best inhibition of TNF-α production was achieved with 1 µM and for IFN-γ production it was 0.01 µM. The minimum dose of thalidomide used (1 µM) inhibited TNF-α production but thalidomide did not inhibit IFN-γ production even when the maximum dose (50 µM) was used. All drugs had an in vitro inhibitory effect on TNF-α production and, with the exception of thalidomide, all of them also decreased IFN-γ production.
Resumo:
The synthetic amino acid copolymer copolymer 1 (Cop 1) suppresses experimental autoimmune encephalomyelitis (EAE) and is beneficial in multiple sclerosis. To further understand Cop 1 suppressive activity, we studied the cytokine secretion profile of various Cop 1-induced T cell lines and clones. Unlike T cell lines induced by myelin basic protein (MBP), which secreted either T cell helper type 1 (Th1) or both Th1 and Th2 cytokines, the T cell lines/clones induced by Cop 1 showed a progressively polarized development toward the Th2 pathway, until they completely lost the ability to secrete Th1 cytokines. Our findings indicate that the polarization of the Cop 1-induced lines did not result from the immunization vehicle or the in vitro growing conditions, but rather from the tendency of Cop 1 to preferentially induce a Th2 response. The response of all of the Cop 1 specific lines/clones, which were originated in the (SJL/J×BALB/c)F1 hybrids, was restricted to the BALB/c parental haplotype. Even though the Cop 1-induced T cells had not been exposed to the autoantigen MBP, they crossreacted with MBP by secretion of interleukin (IL)-4, IL-6, and IL-10. Administration of these T cells in vivo resulted in suppression of EAE induced by whole mouse spinal cord homogenate, in which several autoantigens may be involved. Secretion of anti-inflammatory cytokines by Cop 1-induced suppressor cells, in response to either Cop 1 or MBP, may explain the therapeutic effect of Cop 1 in EAE and in multiple sclerosis.
Resumo:
Background: The role of the immune system in insulin resistance associated with type 2 diabetes has been suggested. Objectives: We assessed the profile of Th1/Th2 cytokines along with the frequencies of immune cells in insulin-treated type 2 diabetic patients (T2DP). Methods: 45 T2D patients and 43 age-matched healthy subjects were selected. Serum concentrations of T-helper type 1 (Th1) and Th2 cytokines and the frequencies of innate and adaptive immunity cells were assessed. Results: T2DP were hyperglycemic and showed high level of insulin, normal levels of triglycerides and total-cholesterol and without any change in HDL-cholesterol.Compared to healthy subjects, T2DP exhibited significant decreased frequencies of neutrophils, without any change in monocytes, eosinophils and natural killer cells. The percentages of total lymphocytes (CD3+) and CD8+-T-cells decreased whereas those of regulatory T-cells increased without any change in CD4+ T-cells in T2DP. Interestingly, the frequencies of effector CD4+-T and B-cells increased in T2DP. Serum concentrations of IL-2, IFN-γ and IL-4 decreased while IL-10 significantly enhanced in T2DP, suggesting a differentiation of CD4+T helper cells towards IL-10-producing- Teff-cells in these patients. Conclusion: Insulin-treated type 2 diabetes is associated with anti-inflammatory profile consistent with differentiation of CD4+-Th-cells towards IL-10-producing-Teff-cells, concomitant with increased frequencies of Treg and B-cells, and this may probably offer prevention against certain infections or autoimmune/inflammatory diseases.
Resumo:
The ability to control human immunodeficiency virus type 1 (HIV-1) infection and progression of the disease is regulated by host and viral factors. This cross-sectional study describes the socio-demographic and epidemiological characteristics associated with HIV-1 infection in 1,061 subjects attended in Londrina and region, south of Brazil: 136 healthy individuals (Group 1), 147 HIV-1-exposed but uninfected individuals (Group 2), 161 HIV-1-infected asymptomatic patients (Group 3), and 617 patients with AIDS (Group 4). Data were obtained by a standardized questionnaire and serological tests. The age of the individuals ranged from 15.1 to 79.5 years, 54.0% and 56.1% of the Groups 3 and 4 patients, respectively, were men. The major features of groups 2, 3, and 4 were a predominance of education level up to secondary school (55.8%, 60.2% and 62.4%, respectively), sexual route of exposure (88.4%, 87.0% and 82.0%, respectively), heterosexual behavior (91.8%, 75.2% and 83.7%, respectively), and previous sexually transmitted diseases (20.4%, 32.5%, and 38.1%, respectively). The patients with AIDS showed the highest rates of seropositivity for syphilis (25.6%), of anti-HCV (22.3%), and anti-HTLV I/II obtained by two serological screening tests (6.2% and 6.8%, respectively). The results documenting the predominant characteristics for HIV-1 infection among residents of Londrina and region, could be useful for the improvement of current HIV-1 prevention, monitoring and therapeutic programs targeted at this population.
Resumo:
Urinary symptoms occur in 19% of human T-cell lymphotropic virus type 1 (HTLV-1)-infected patients who do not fulfill criteria for HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and in almost 100% of HAM/TSP patients. Few studies have evaluated therapies for overactive bladder (OAB) caused by HTLV-1 infection. This case report describes the effect of onabotulinum toxin A on the urinary manifestations of three patients with HAM/TSP and OAB symptoms. The patients were intravesically administered 200 units of Botox®. Their incontinence episodes improved, and their OAB symptoms scores (OABSS) reduced significantly. These data indicate that Botox® should be a treatment option for OAB associated with HTLV-1 infection.
Resumo:
Human T cell leukemia virus type-I (HTLV-I) infection is associated with spontaneous T cell activation and uncontrolled lymphocyte proliferation. An exacerbated type-1 immune response with production of pro-inflammatory cytokines (interferon-gamma and tumor necrosis factor-alpha) is significantly higher in patients with myelopathy associated to HTLV-I than in HTLV-I asymptomatic carriers. In contrast with HTLV-I, a chronic Schistosoma mansoni infection is associated with a type-2 immune response with high levels of interleukin (IL-4, IL-5, and IL-10) and low levels of IFN-gamma. In this study, clinical and immunological consequences of the HTLV-I and S. mansoni infection were evaluated. The immune response in patients with schistosomiasis co-infected with HTLV-I showed low levels of IL-5 (p < 0.05) in peripheral blood mononuclear cells cultures stimulated with S. mansoni antigen (SWAP) and decreased SWAP-specific IgE levels when compared with patients with only schistosomiasis (p < 0.05). Liver fibrosis was mild in all HTLV-I co-infected patients. Immunological response was also compared in individuals who had only HTLV-I infection with those who were co-infected with HTLV-I and helminths (S. mansoni and Strongyloides stercoralis). In patients HTLV-I positive co-infected with helminths the IFN-gamma levels were lower than in individuals who had only HTLV-I. Moreover, there were fewer cells expressing IFN-gamma and more cells expressing IL-10 in individuals co-infected with HTLV-I and helminths. These dates indicate that HTLV-I infection decrease type 2-response and IgE synthesis and are inversely associated with the development of liver fibrosis. Moreover, helminths may protect HTLV-I infected patients to produce large quantities of pro-inflammatory cytokines such as IFN-gamma.
Resumo:
Pancreatic beta-cell apoptosis is known to participate in the beta-cell destruction process that occurs in diabetes. It has been described that high glucose level induces a hyperfunctional status which could provoke apoptosis. This phenomenon is known as glucotoxicity and has been proposed that it can play a role in type 1 diabetes mellitus pathogenesis. In this study we develop an experimental design to sensitize pancreatic islet cells by high glucose to streptozotocin (STZ) and proinflammatory cytokines [interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma]-induced apoptosis. This method is appropriate for subsequent quantification of apoptotic islet cells stained with Tdt-mediated dUTP Nick-End Labeling (TUNEL) and protein expression assays by Western Blotting (WB).
Resumo:
Leprosy inflammatory episodes [type 1 (T1R) and type 2 (T2R) reactions] represent the major cause of irreversible nerve damage. Leprosy serology is known to be influenced by the patient’s bacterial index (BI) with higher positivity in multibacillary patients (MB) and specific multidrug therapy (MDT) reduces antibody production. This study evaluated by ELISA antibody responses to leprosy Infectious Disease Research Institute diagnostic-1 (LID-1) fusion protein and phenolic glycolipid I (PGL-I) in 100 paired serum samples of 50 MB patients collected in the presence/absence of reactions and in nonreactional patients before/after MDT. Patients who presented T2R had a median BI of 3+, while MB patients with T1R and nonreactional patients had median BI of 2.5+ (p > 0.05). Anti-LID-1 and anti-PGL-I antibodies declined in patients diagnosed during T1R (p < 0.05). Anti-LID-1 levels waned in MB with T2R at diagnosis and nonreactional MB patients (p < 0.05). Higher anti-LID-1 levels were seen in patients with T2R at diagnosis (vs. patients with T1R at diagnosis, p = 0.008; vs. nonreactional patients, p = 0.020) and in patients with T2R during MDT (vs. nonreactional MB, p = 0.020). In MB patients, high and persistent anti-LID-1 antibody levels might be a useful tool for clinicians to predict which patients are more susceptible to develop leprosy T2R.
Resumo:
Through their capacity to sense danger signals and to generate active interleukin-1β (IL-1β), inflammasomes occupy a central role in the inflammatory response. In contrast to IL-1β, little is known about how IL-1α is regulated. We found that all inflammasome activators also induced the secretion of IL-1α, leading to the cosecretion of both IL-1 cytokines. Depending on the type of inflammasome activator, release of IL-1α was inflammasome dependent or independent. Calcium influx induced by the opening of cation channels was sufficient for the inflammasome-independent IL-1α secretion. In both cases, IL-1α was released primarily in a processed form, resulting from intracellular cleavage by calpain-like proteases. Inflammasome-caspase-1-dependent release of IL-1α and IL-1β was independent of caspase-1 catalytic activity, defining a mode of action for caspase-1. Because inflammasomes contribute to the pathology of numerous chronic inflammatory diseases such as gout and diabetes, IL-1α antagonists may be beneficial in the treatment of these disorders.
Resumo:
Pancreatic ß cells are highly specialized endocrine cells located within the islets of Langerhans in the pancreas. Their main role is to produce and secrete insulin, the hormone essential for the regulation of glucose homeostasis and body's metabolism. Diabetes mellitus develops when the amount of insulin released by ß cells is not sufficient to cover the metabolic demand. In type 1 diabetes (5-10% of diagnoses) insulin deficiency is caused by the autoimmune destruction of pancreatic ß cells. Type 2 diabetes (90% of diagnoses) results from a genetic predisposition and from the presence of adverse environmental conditions. The combination of these factors reduces insulin sensitivity of peripheral target tissues, causes impairment in ß-cell function and can lead to partial loss of ß cells. The development of novel therapeutic strategies for the treatment of diabetes necessitates the comprehension of the cellular processes involved in dysfunction and loss of ß cells. My thesis was focused on the involvement in the physiopathological processes leading to the development of diabetes of a class of small regulatory RNA molecules, called microRNAs (miRNAs) that post- transcriptionally regulate gene expression. Global miRNA profiling in pancreatic islets of two animal models of diabetes, the db/db mice and mice that were fed a high fat diet (HFD), characterized by obesity and insulin resistance, led us to identify two groups of miRNAs displaying expression changes under pre-diabetic and diabetic conditions. Among the miRNAs already upregulated in pre-diabetic db/db mice and HFD mice, miR- 132 was found to have beneficial effects on pancreatic ß cell function and survival. Indeed, mimicking the upregulation of miR-132 in primary pancreatic islet cells and ß-cell lines improved glucose- induced insulin secretion and favored survival of the cells upon exposure to pro-apoptotic stimuli such as palmitate and cytokines. MiR-132 was found to exert its action by enhancing the expression of MafA, a transcription factor essential for ß-cell function, survival and identity. On the other hand, up-regulation of miR-199a-5p and miR-199a-3p was detectable only in the islets of diabetic db/db mice and resulted in impaired insulin secretion and sensitization of the cells to apoptosis. MiR-199a- 5p was found to decrease insulin secretion by inducing the expression of granuphilin, a potent inhibitor of ß cell exocytosis. In contrast, miR-199a-3p was demonstrated to directly target and reduce the expression of two key ß-cell genes, mTOR and cMET, resulting in impaired ß-cell adaptation to metabolic demands and loss by apoptosis. Our findings suggest that miRNAs are important players in the onset of type 2 diabetes. MiRNA expression is adjusted in pancreatic ß cells exposed to a diabetogenic environment. These changes initially concern miRNAs responsible for adaptive processes aimed at compensating the onset of insulin resistance, but later such changes can be overlapped by modifications in the level of several additional miRNAs that favor ß-cell failure and the onset of type 2 diabetes.
Resumo:
Regulation of viral genome expression is the result of complex cooperation between viral proteins and host cell factors. We report here the characterization of a novel cellular factor sharing homology with the specific cysteine-rich C-terminal domain of the basic helix-loop-helix repressor protein I-mfa. The synthesis of this new factor, called HIC for Human I-mfa domain-Containing protein, is controlled at the translational level by two different codons, an ATG and an upstream non-ATG translational initiator, allowing the production of two protein isoforms, p32 and p40, respectively. We show that the HIC protein isoforms present different subcellular localizations, p32 being mainly distributed throughout the cytoplasm, whereas p40 is targeted to the nucleolus. Moreover, in trying to understand the function of HIC, we have found that both isoforms stimulate in T-cells the expression of a luciferase reporter gene driven by the human T-cell leukemia virus type I-long terminal repeat in the presence of the viral transactivator Tax. We demonstrate by mutagenesis that the I-mfa-like domain of HIC is involved in this regulation. Finally, we also show that HIC is able to down-regulate the luciferase expression from the human immunodeficiency virus type 1-long terminal repeat induced by the viral transactivator Tat. From these results, we propose that HIC and I-mfa represent two members of a new family of proteins regulating gene expression and characterized by a particular cysteine-rich C-terminal domain.
Resumo:
The essential role of cytokines in parasitic diseases has been emphasised since the in vivo description of the importance of T helper 1 (Th1) and T helper 2 (Th2) CD4+ T cell responses in resistance and susceptibility to infection with L. major in mice. Th1 cells produced IL-2, IFN-gamma and Lymphotoxin T (LT) and Th2 cells produce IL-4, IL-5 and IL-13. In this model of infection the correlation between on the one hand resistance to infection and the development of a Th1 response and on the other hand susceptibility and Th2 cell development allowed the identification of the mechanisms directing the differentiation of CD4+ T cell precursors towards either Th1 type or Th2 type responses. Cytokines are the crucial inducer of functional CD4+ T cell subset differentiation during infection with L. major. IL-12 and IFN-gamma direct the differentiation of Th1 response and IL-4 of a Th2 response. In susceptible mice, careful analysis of IL-4 production during the first days of infection has shown that the IL-4 produced as a result of a very early burst of IL-4 mRNA expression (16 hours) plays a essential role in the maturation of a Th2 CD4+ T cell response by rendering the CD4+ T cell precursors unresponsive to IL-12. Activation of a restricted population of CD4+ T cells expressing the V beta 4 V alpha 8 TCR heterodimer after recognition of a single antigen, the LACK (Leishmania Activated c Kinase) antigen, resulted in this rapid production of IL-4 required for the subsequent CD4+ T cell differentiation. Thus, tolerization of these cells might contribute a strategy for preventing infection with L. major.