955 resultados para two-dimensional field theory
Resumo:
The only calculations performed beyond one-loop level in the light-cone gauge make use of the Mandelstam-Leibbrandt (ML) prescription in order to circumvent the notorious gauge dependent poles. Recently we have shown that in the context of negative dimensional integration method (NDIM) such prescription can be altogether abandoned, at least in one-loop order calculations. We extend our approach, now studying two-loop integrals pertaining to two-point functions. While previous works on the subject present only divergent parts for the integrals, we show that our prescriptionless method gives the same results for them, besides finite parts for arbitrary exponents of propagators. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We construct the finite temperature field theory of the two-dimensional ghost-antighost system within the framework of thermo field theory. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We study the (lambda/4!)phi(4) massless scalar field theory in a four-dimensional Euclidean space, where all but one of the coordinates are unbounded. We are considering Dirichlet boundary conditions in two hyperplanes, breaking the translation invariance of the system. We show how to implement the perturbative renormalization up to two-loop level of the theory. First, analyzing the full two and four-point functions at the one-loop level, we show that the bulk counterterms are sufficient to render the theory finite. Meanwhile, at the two-loop level, we must also introduce surface counterterms in the bare Lagrangian in order to make finite the full two and also four-point Schwinger functions. (c) 2006 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We have studied the physical content of the following models: Maxwell, Proca, Self-Dual and Maxwell-Chern-Simons. One method we have used is the decomposition in the so called helicity variables, which can be done in the Lagrangian formalism. It leads to the correct counting of degrees of freedom without choosing a gauge condition. The method separates the propagating modes from the non-propagating ones. The Hamiltonian of the MCS and the AD is calculated. The second method used here is the analysis of the sign of the imaginary part of the residues of the two-point amplitude of the theory, showing that the models analyzed are free of ghosts. We also carry the dimensional reduction of the Maxwell-Chern-Simons and Self-Dual models from D = 2+1 to D = 1 + 1 dimensions. Next, we show that the dimensional reduction of those equivalent models also leads to equivalent models in D=1+1. Even more interesting is the fact, demonstrated here, that those reduced models can also be connected via gauge embedding. So the gauge embedding of the Self-Dual model into the Maxwell-Chern-Simons theory is preserved by the dimensional reduction
Resumo:
We consider general d-dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in the high temperature region ('beta' << 1). Each model is characterized by a single site apriori spin distribution taken to be even. We also take the parameter 'alfa' = ('S POT.4') - 3 '(S POT.2') POT.2' > 0, i.e. in the region which we call Gaussian subjugation, where ('S POT.K') denotes the kth moment of the apriori distribution. Associated with the model is a lattice quantum field theory known to contain a particle of asymptotic mass -ln 'beta' and a bound state below the two-particle threshold. We develop a 'beta' analytic perturbation theory for the binding energy of this bound state. As a key ingredient in obtaining our result we show that the Fourier transform of the two-point function is a meromorphic function, with a simple pole, in a suitable complex spectral parameter and the coefficients of its Laurent expansion are analytic in 'beta'.
Resumo:
We consider a solution of three dimensional New Massive Gravity with a negative cosmological constant and use the AdS/CTF correspondence to inquire about the equivalent two dimensional model at the boundary. We conclude that there should be a close relation of the theory with the Korteweg-de Vries equation. (C) 2012 Elsevier B.V..All rights reserved.
Resumo:
In order to fully describe the construct of empowerment and to determine possible measures for this construct in racially and ethnically diverse neighborhoods, a qualitative study based on Grounded Theory was conducted at both the individual and collective levels. Participants for the study included 49 grassroots experts on community empowerment who were interviewed through semi-structured interviews and focus groups. The researcher also conducted field observations as part of the research protocol.^ The results of the study identified benchmarks of individual and collective empowerment and hundreds of possible markers of collective empowerment applicable in diverse communities. Results also indicated that community involvement is essential in the selection and implementation of proper measures. Additional findings were that the construct of empowerment involves specific principles of empowering relationships and particular motivational factors. All of these findings lead to a two dimensional model of empowerment based on the concepts of relationships among members of a collective body and the collective body's desire for socio-political change.^ These results suggest that the design, implementation, and evaluation of programs that foster empowerment must be based on collaborative ventures between the population being served and program staff because of the interactive, synergistic nature of the construct. In addition, empowering programs should embrace specific principles and processes of individual and collective empowerment in order to maximize their effectiveness and efficiency. And finally, the results suggest that collaboratively choosing markers to measure the processes and outcomes of empowerment in the main systems and populations living in today's multifaceted communities is a useful mechanism to determine change. ^
Resumo:
In low-accumulation regions, the reliability of d18O-derived temperature signals from ice cores within the Holocene is unclear, primarily due to the small climate changes relative to the intrinsic noise of the isotopic signal. In order to learn about the representativity of single ice cores and to optimise future ice-core-based climate reconstructions, we studied the stable-water isotope composition of firn at Kohnen station, Dronning Maud Land, Antarctica. Analysing d18O in two 50 m long snow trenches allowed us to create an unprecedented, two-dimensional image characterising the isotopic variations from the centimetre to the hundred-metre scale. This data set includes the complete trench oxygen isotope record together with the meta data used in the study.
Resumo:
In the scattering analysis of a circular cylindrical structure, the impedance boundary condition (IBC) can approximate and simplify the perfect electric conductor (PEC) boundary condition. The circular cylinder problem can be solved with modal methods but they require a large number of terms when the cylinder radius is large in terms of the wave length. The uniform theory of diffraction (UTD) [1] is commonly used to overcome this issue. The two-dimensional problem of scattering on a circular cylinder covered by a dielectric layer has been analyzed by [2]–[5], but their solutions either do not consider oblique incidence, fail on the transition region or use a constant surface impedance.
Resumo:
In this thesis we study aspects of (0,2) superconformal field theories (SCFTs), which are suitable for compactification of the heterotic string. In the first part, we study a class of (2,2) SCFTs obtained by fibering a Landau-Ginzburg (LG) orbifold CFT over a compact K\"ahler base manifold. While such models are naturally obtained as phases in a gauged linear sigma model (GLSM), our construction is independent of such an embedding. We discuss the general properties of such theories and present a technique to study the massless spectrum of the associated heterotic compactification. We test the validity of our method by applying it to hybrid phases of GLSMs and comparing spectra among the phases. In the second part, we turn to the study of the role of accidental symmetries in two-dimensional (0,2) SCFTs obtained by RG flow from (0,2) LG theories. These accidental symmetries are ubiquitous, and, unlike in the case of (2,2) theories, their identification is key to correctly identifying the IR fixed point and its properties. We develop a number of tools that help to identify such accidental symmetries in the context of (0,2) LG models and provide a conjecture for a toric structure of the SCFT moduli space in a large class of models. In the final part, we study the stability of heterotic compactifications described by (0,2) GLSMs with respect to worldsheet instanton corrections to the space-time superpotential following the work of Beasley and Witten. We show that generic models elude the vanishing theorem proved there, and may not determine supersymmetric heterotic vacua. We then construct a subclass of GLSMs for which a vanishing theorem holds.
Resumo:
The density of firn is an important property for monitoring and modeling the ice sheet as well as to model the pore close-off and thus to interpret ice core-based greenhouse gas records. One feature, which is still in debate, is the potential existence of an annual cycle of firn density in low-accumulation regions. Several studies describe or assume seasonally successive density layers, horizontally evenly distributed, as seen in radar data. On the other hand, high-resolution density measurements on firn cores in Antarctica and Greenland showed no clear seasonal cycle in the top few meters. A major caveat of most existing snow-pit and firn-core based studies is that they represent one vertical profile from a laterally heterogeneous density field. To overcome this, we created an extensive dataset of horizontal and vertical density data at Kohnen Station, Dronning Maud Land on the East Antarctic Plateau. We drilled and analyzed three 90 m long firn cores as well as 160 one meter long vertical profiles from two elongated snow trenches to obtain a two dimensional view of the density variations. The analysis of the 45 m wide and 1 m deep density fields reveals a seasonal cycle in density. However, the seasonality is overprinted by strong stratigraphic noise, making it invisible when analyzing single firn cores. Our density dataset extends the view from the local ice-core perspective to a hundred meter scale and thus supports linking spatially integrating methods such as radar and seismic studies to ice and firn cores.
Resumo:
A natural way to generalize tensor network variational classes to quantum field systems is via a continuous tensor contraction. This approach is first illustrated for the class of quantum field states known as continuous matrix-product states (cMPS). As a simple example of the path-integral representation we show that the state of a dynamically evolving quantum field admits a natural representation as a cMPS. A completeness argument is also provided that shows that all states in Fock space admit a cMPS representation when the number of variational parameters tends to infinity. Beyond this, we obtain a well-behaved field limit of projected entangled-pair states (PEPS) in two dimensions that provide an abstract class of quantum field states with natural symmetries. We demonstrate how symmetries of the physical field state are encoded within the dynamics of an auxiliary field system of one dimension less. In particular, the imposition of Euclidean symmetries on the physical system requires that the auxiliary system involved in the class' definition must be Lorentz-invariant. The physical field states automatically inherit entropy area laws from the PEPS class, and are fully described by the dissipative dynamics of a lower dimensional virtual field system. Our results lie at the intersection many-body physics, quantum field theory and quantum information theory, and facilitate future exchanges of ideas and insights between these disciplines.
Resumo:
We determine numerically the single-particle and the two-particle spectrum of the three-state quantum Potts model on a lattice by using the density matrix renormalization group method, and extract information on the asymptotic (small momentum) S-matrix of the quasiparticles. The low energy part of the finite size spectrum can be understood in terms of a simple effective model introduced in a previous work, and is consistent with an asymptotic S-matrix of an exchange form below a momentum scale p*. This scale appears to vanish faster than the Compton scale, mc, as one approaches the critical point, suggesting that a dangerously irrelevant operator may be responsible for the behaviour observed on the lattice.
Resumo:
The emergence of hydrodynamic features in off-equilibrium (1 + 1)-dimensional integrable quantum systems has been the object of increasing attention in recent years. In this Master Thesis, we combine Thermodynamic Bethe Ansatz (TBA) techniques for finite-temperature quantum field theories with the Generalized Hydrodynamics (GHD) picture to provide a theoretical and numerical analysis of Zamolodchikov’s staircase model both at thermal equilibrium and in inhomogeneous generalized Gibbs ensembles. The staircase model is a diagonal (1 + 1)-dimensional integrable scattering theory with the remarkable property of roaming between infinitely many critical points when moving along a renormalization group trajectory. Namely, the finite-temperature dimensionless ground-state energy of the system approaches the central charges of all the minimal unitary conformal field theories (CFTs) M_p as the temperature varies. Within the GHD framework we develop a detailed study of the staircase model’s hydrodynamics and compare its quite surprising features to those displayed by a class of non-diagonal massless models flowing between adjacent points in the M_p series. Finally, employing both TBA and GHD techniques, we generalize to higher-spin local and quasi-local conserved charges the results obtained by B. Doyon and D. Bernard [1] for the steady-state energy current in off-equilibrium conformal field theories.