948 resultados para trans-2-nitrocinnamic acid
Resumo:
Background The Nef protein of HIV facilitates virus replication and disease progression in infected patients. This role as pathogenesis factor depends on several genetically separable Nef functions that are mediated by interactions of highly conserved protein-protein interaction motifs with different host cell proteins. By studying the functionality of a series of nef alleles from clinical isolates, we identified a dysfunctional HIV group O Nef in which a highly conserved valine-glycine-phenylalanine (VGF) region, which links a preceding acidic cluster with the following proline-rich motif into an amphipathic surface was deleted. In this study, we aimed to study the functional importance of this VGF region. Results The dysfunctional HIV group O8 nef allele was restored to the consensus sequence, and mutants of canonical (NL4.3, NA-7, SF2) and non-canonical (B2 and C1422) HIV-1 group M nef alleles were generated in which the amino acids of the VGF region were changed into alanines (VGF→AAA) and tested for their capacity to interfere with surface receptor trafficking, signal transduction and enhancement of viral replication and infectivity. We found the VGF motif, and each individual amino acid of this motif, to be critical for downregulation of MHC-I and CXCR4. Moreover, Nef’s association with the cellular p21-activated kinase 2 (PAK2), the resulting deregulation of cofilin and inhibition of host cell actin remodeling, and targeting of Lck kinase to the trans-golgi-network (TGN) were affected as well. Of particular interest, VGF integrity was essential for Nef-mediated enhancement of HIV virion infectivity and HIV replication in peripheral blood lymphocytes. For targeting of Lck kinase to the TGN and viral infectivity, especially the phenylalanine of the triplet was essential. At the molecular level, the VGF motif was required for the physical interaction of the adjacent proline-rich motif with Hck. Conclusion Based on these findings, we propose that this highly conserved three amino acid VGF motif together with the acidic cluster and the proline-rich motif form a previously unrecognized amphipathic surface on Nef. This surface appears to be essential for the majority of Nef functions and thus represents a prime target for the pharmacological inhibition of Nef.
Resumo:
We analyzed the incidence, presenting features, risk factors of extramedullary (EM) relapse occurring in acute promyelocytic leukemia (APL) treated with all-trans retinoic acid (ATRA) and chemotherapy by using a competing-risk method. In total, 740/ 806 (92%) patients included in three multicenter trials (APL91, APL93 trials and PETHEMA 96) achieved CR, of whom 169 (23%) relapsed, including 10 EM relapses. Nine relapses involved the central nervous system (CNS) and one the skin, of which two were isolated EM relapse. In patients with EM disease, median WBC count was 26950/mm3 (7700-162000). The 3-year cumulative incidence of EM disease at first relapse was 5.0%. Univariate analysis identified age <45 years (P=0.05), bcr3 PML-RARalpha isoform (P= 0.0003) and high WBC counts (> or = 10,000/ mm3) (P<0.0001) as risk factors for EM relapse. In multivariate analysis, only high WBC count remained significant (P= 0.001). Patients with EM relapse had a poorer outcome since median survival from EM relapse was 6.7 months as compared to 26.3 months for isolated BM relapse (P=0.04). In conclusion, EM relapse in APL occurs more frequently in patients with increased WBC counts (> or = 10,000/mm3) and carries a poor prognosis. Whether CNS prophylaxis should be systematically performed in patients with WBC > or = 10,000/mm3 at diagnosis remains to be established.
Resumo:
The death-associated protein kinase 2 (DAPK2) belongs to a family of Ca(2+)/calmodulin-regulated serine/threonine kinases involved in apoptosis. During investigation of candidate genes operative in granulopoiesis, we identified DAPK2 as highly expressed. Subsequent investigations demonstrated particularly high DAPK2 expression in normal granulocytes compared with monocytes/macrophages and CD34(+) progenitor cells. Moreover, significantly increased DAPK2 mRNA levels were seen when cord blood CD34(+) cells were induced to differentiate toward neutrophils in tissue culture. In addition, all-trans retinoic acid (ATRA)-induced neutrophil differentiation of two leukemic cell lines, NB4 and U937, revealed significantly higher DAPK2 mRNA expression paralleled by protein induction. In contrast, during differentiation of CD34(+) and U937 cells toward monocytes/macrophages, DAPK2 mRNA levels remained low. In primary leukemia, low expression of DAPK2 was seen in acute myeloid leukemia samples, whereas chronic myeloid leukemia samples in chronic phase showed intermediate expression levels. Lentiviral vector-mediated expression of DAPK2 in NB4 cells enhanced, whereas small interfering RNA-mediated DAPK2 knockdown reduced ATRA-induced granulocytic differentiation, as evidenced by morphology and neutrophil stage-specific maturation genes, such as CD11b, G-CSF receptor, C/EBPepsilon, and lactoferrin. In summary, our findings implicate a role for DAPK2 in granulocyte maturation.
Resumo:
Mo(VI) oxo complexes have been persistently sought after as epoxidation catalysts. Further, Mo(V) oxo clusters of the form M4(µ3-X)4 (M = transition metal, X = O, S) have been rigorously studied due to their remarkable structures and also their usefulness as models for electronic studies. The syntheses and characterizations of new Mo(VI) and Mo(V) oxo complexes have been described in this dissertation. Two new complexes MoO2Cl2Ph2P(O)CH2COOH and MoO2Cl2Ph2P(O)C6H4tBuS(O) were synthesized from reactions of “MoO2Cl2” with ligands Ph2P(O)CH2COOH and Ph2P(O)C6H4tBuS(O). Tetrameric packing arrangements comprised of hydrogen bonds were obtained for the complex MoO2Cl2Ph2P(O)CH2COOH and the ligand Ph2P(O)CH2COOH. Further the stability of an Mo-O bond was preferred over the Mo-S bond even though this resulted in the formation of a more strained seven membered ring. Tetranuclear Mo(V) complexes of the form [Mo4(µ3-O)4(µ-O2PR2)4O4], (PR2 = PPh2, PMe2) were synthesized using reactions of MoO2(acac)2 with diphenyl and dimethyl phosphinic acids, in ethanol. In the crystal structure of these complexes four Mo=O units are interconnected by four triply bridging oxygen atoms and bridging phosphinate ligands. The complex exhibited fourfold symmetry as evidenced by a single 31P NMR peak for the P atoms in the coordinated ligands. Reaction of WO2(acac)2 with Ph2POOH in methanol resulted in a dimeric W(VI) complex [(CH3O)2(O)W(µ-O)( µ-O2PPh2)2W(O)(CH3O)2] which contained a packing disorder in its crystal structure. Similar reactions of MoO2(acac)2 with benzoic acid derivatives resulted in dimeric complexes of the form [Mo2O2(acac)2(µ-O)(µ-OC2H5)(µ-O2CR)] (R = C6H5, (o-OH)C6H4, (p-Cl)C6H4, (2,4-(OH)2)C6H3, (o-I)C6H4) and one tetrameric complex [Mo2O2(acac)2(µ-O)(µ-OC2H5)(µ-O2C)C6H4(p-µ-O2C)Mo2O2(acac)2(µ-O)(µ-OC2H5)] with terephthalic acid. 1H NMR proved very useful in the prediction of the formation of dimers with the substituted benzoic acids, which were also confirmed by elemental analyses. The reductive capability of ethanol proved instrumental in the syntheses of Mo(V) tetrameric and dimeric clusters. Synthetic details, IR, 1H and 31P NMR spectroscopy and elemental analyses are reported for all new complexes. Further, single crystal X-ray structures of MoO2Cl2Ph2P(O)CH2COOH, MoO2Cl2Ph2P(O)C6H4tBuS(O), [Mo4(µ3-O)4(µ-O2PR2)4O4], (PR2 = PPh2, PMe2), [(CH3O)2(O)W(µ-O)( µ-O2PPh2)2W(O)(CH3O)2] and [Mo2O2(acac)2(µ-O)(µ-OC2H5)(µ-O2CR)] (R = C6H5, (o-OH)C6H4) are also presented.
Resumo:
Trifluoroacetic acid has been discovered to be a highly effective and efficient reagent for the tandem Claisen rearrangement and cyclisation reaction to yield 3-arylmethylene-3,4-dihydro-1H-quinolin-2-ones from compounds obtained from the SN2 reaction between anilines and acetyl derivatives of Baylis-Hillman adducts of acrylates in the presence of DABCO. In contrast similar compounds obtained from the acetyl derivatives of Baylis-Hillman adduct of acrylonitrile on treatment with trifluoroacetic acid directly furnish 3-arylmethyl-2-amino-quinoline via tandem Claisen rearrangement, cylisation and isomerisation.
Resumo:
Induction therapy of promyelocytic leukemia with all-trans retinoic acid is a standard therapy despite significant side-effects. The most important, the "retinoic acid syndrome", consists of a hyperinflammatory reaction with capillary leakage (edema, pleural, and pericardial effusion), infiltration of myeloid cells into internal organs and systemic signs of inflammation. We describe here two cases of another hyperinflammatory reaction during all-trans retinoic acid therapy, the Sweet's syndrome, consisting of infiltrates of the skin and internal organs by neutrophilic granulocytes. Fever, painful erythematous cutaneous plaques, prominent musculoskeletal involvement (myositis, fasciitis), a sterile pulmonary infiltration and intercurrent proteinuria characterized the clinical course of all-trans retinoic acid-associated Sweet's syndrome. Treatment with glucocorticoids led to resolution of the syndrome within 48 h. Three other cases of all-trans retinoic acid-associated Sweet's syndrome without involvement of internal organs, prominent on our cases, were published previously. Recognition of ATRA-associated Sweet's syndrome is of practical importance.
Resumo:
Fifty members of a novel class of antimicrobial compounds, 2-(4-R-phenoxymethyl)benzoic acid thioureides, were synthesized and characterized with respect to their activities against three parasites of human relevance, namely the protozoa Giardia lamblia and Toxoplasma gondii, and the larval (metacestode) stage of the tapeworm Echinococcus multilocularis. To determine the selective toxicity of these compounds, the human colon cancer cell line Caco2 and primary cultures of human foreskin fibroblasts (HFF) were also investigated. The new thioureides were obtained in a three-step-reaction process and subsequently characterized by their physical constants (melting point, solubility). The chemical structures were elucidated by (1)H NMR, (13)C NMR, IR spectral methods and elemental analysis. The analyses confirmed the final and intermediate compound structures and the synthesis. The compounds were then tested on the parasites in vitro. All thioureides, except two compounds with a nitro group, were totally ineffective against Giardia lamblia. 23 compounds inhibited the proliferation of T. gondii, three of them with an IC(50) of approximately 1 microM. The structural integrity of E. multilocularis metacestodes was affected by 22 compounds. In contrast, HFF were not susceptible to any of these thioureides, while Caco2 cells were affected by 17 compounds, two of them inhibiting proliferation with an IC(50) in the micromolar range. Thioureides may thus present a promising class of anti-infective agents.
Resumo:
Trans-10,cis-12 conjugated linoleic acid (CLA) supplementation causes milk fat depression in dairy cows, but CLA effects on glucose metabolism are not clear. The objective of the study was to investigate glucose metabolism, especially endogenous glucose production (eGP) and glucose oxidation (GOx), as well as hepatic genes involved in endogenous glucose production in Holstein cows supplemented either with 50 g of rumen-protected CLA (9% trans-10,cis-12 and 10% cis-9,trans-11; CLA; n=10) or 50 g of control fat (24% C18:2; Ctrl; n=10) from wk 2 before parturition to wk 9 of lactation. Animal performance data were recorded and blood metabolites and hormones were taken weekly from 2 wk before to 12 wk after parturition. During wk 3 and 9 after parturition, glucose tolerance tests were performed and eGP and GOx were measured by [U-(13)C] glucose infusion. Liver biopsies were taken at the same time to measure total fat and glycogen concentrations and gene expression of pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and carnitine palmitoyl-transferase 1. Conjugated linoleic acid feeding reduced milk fat, but increased milk lactose output; milk yield was higher starting 5 wk after parturition in CLA-fed cows than in Ctrl-fed cows. Energy balance was more negative during CLA supplementation, and plasma concentrations of glucose were higher immediately after calving in CLA-fed cows. Conjugated linoleic acid supplementation did not affect insulin release during glucose tolerance tests, but reduced eGP in wk 3, and eGP and GOx increased with time after parturition. Hepatic gene expression of cytosolic phosphoenolpyruvate carboxykinase tended to be lower in CLA-fed cows than in Ctrl-fed cows. In spite of lower eGP in CLA-fed cows, lactose output and plasma glucose concentrations were greater in CLA-fed cows than in Ctrl-fed cows. This suggests a CLA-related glucose sparing effect most likely due to lower glucose utilization for milk fat synthesis and probably because of a more efficient whole-body energy utilization in CLA-fed cows.
Resumo:
Associations between the central serotonergic and γ-aminobutyric acid (GABA) systems play key roles in the prefrontal cortical regulation of emotion and cognition and in the pathophysiology and pharmacotherapy of highly prevalent psychiatric disorders. The goal of this study was to test the effects of common variants of the tryptophan hydroxylase isoform 2 (TPH2) gene on GABA concentration in the prefrontal cortex (PFC) using magnetic resonance spectroscopy. In this study involving 64 individuals, we examined the associations between prefrontal cortical GABA concentration and 12 single nucleotide polymorphisms (SNPs) spanning the TPH2 gene, including rs4570625 (−703 G/T SNP), a potentially functional TPH2 polymorphism that has been associated with decreased TPH2 mRNA expression and panic disorder. Our results revealed a significant association between increased GABA concentration in the PFC and the T-allele frequencies of two TPH2 SNPs, namely rs4570625 (−703 G/T) and rs2129575 (p≤0.0004) and the C-allele frequency of one TPH2 SNP, namely rs1386491 (p = 0.0003) in female subjects. We concluded that rs4570625 (−703 G/T), rs2129575 and rs1386491 play a significant role in GABAergic neurotransmission and may contribute to the sex-specific dysfunction of the GABAergic system in the PFC.
Resumo:
The Non-Hodgkin's Lymphoma (NHLs) are neoplasms of the immune system. Currently, less than 1% of the etiology of the 22,000 newly diagnosed lymphoma cases in the U.S.A. every year is known. This disease has a significant prevalence and high mortality rate. Cell growth in lymphomas has been shown to be an important parameter in aggressive NHL when establishing prognosis, as well as an integral part in the pathophysiology of the disease process. While many aggressive B cell NHLs respond initially to chemotherapeutic regimens such as CHOP-bleo (adriamycin, vincristine and bleomycin) etc., relapse is common, and the patient is then often refractory to further salvage treatment regimens.^ To assess their potential to inhibit aggressive B cell NHLs and induce apoptosis (also referred to as programmed cell death (PCD)), it was proposed to utilize the following biological agents-liposomal all-trans retinoic acid (L-ATRA) which is a derivative of Vitamin A in liposomes and Vitamin D3. Preliminary evidence indicates that L-ATRA may inhibit cell growth in these cells and may induce PCD as well. Detailed studies were performed to understand the above phenomena by L-ATRA and Vitamin D3 in recently established NHL-B cell lines and primary cell cultures. The gene regulation involved in the case of L-ATRA was also delineated. ^