972 resultados para time-resolved photoluminescence, energy transfer, quenching, photon up-conversion
Resumo:
Optical spectroscopic properties of Tm3+-doped 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) glass are reported. The absorption spectra were obtained and radiative parameters were determined using the Judd-Ofelt theory. Characteristics of excited states were studied in two sets of experiments. Excitation at 360 nm originates a relatively narrow band emission at 450 nm attributed to transition D-1(2)-->F-3(4) of the Tm3+ ion with photon energy larger than the band-gap energy of the glass matrix. Excitation at 655 nm originates a frequency upconverted emission at 450 nm (D-1(2)-->F-3(4)) and emission at 790 nm (H-3(4)-->H-3(6)). The radiative lifetimes of levels D-1(2) and H-3(4) were measured and the differences between their experimental values and the theoretical predictions are understood as due to the contribution of energy transfer among Tm3+ ions. (C) 2003 American Institute of Physics.
Resumo:
Efficient energy upconversion of cw radiation at 1.064 mum into blue, red, and near infrared emission in Tm3+-doped Yb3+-sensitized 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) glasses is reported. Intense blue upconversion luminescence at 485 nm corresponding to the Tm3+ (1)G(4)--> H-3(6) transition with a measured absolute power of 0.1 muW for 800 mW excitation power at room temperature is observed. The experimental results also revealed a sevenfold enhancement in the upconversion efficiency when the sample was heated from room temperature to 235 degreesC yielding 0.7 muW of blue absolute fluorescence power for 800 mW pump power. High brightness emission around 800 nm (F-3(4)--> H-3(6)) in addition to a less intense 655 nm ((1)G(4)--> H-3(4) and F-3(2,3)--> H-3(6)) fluorescence is also recorded. The energy upconversion excitation mechanism for thulium emitting levels is assigned to multiphonon-assisted anti-Stokes excitation of the ytterbium-sensitizer followed by multiphonon-assisted sequential energy-transfer processes. (C) 2001 American Institute of Physics.
Resumo:
To gain a fuller understanding of the regions of the Staphylococcus aureus alpha-toxin important in pore formation, we have used Forster dipole-dipole energy transfer to demonstrate that a central glycine-rich region of alpha-toxin (the so-called ''hinge'' region) inserts deeply into the bilayer on association of toxin with liposomes. Mutant alpha-toxins with unique cysteine (C) residues at positions 69 and 130 [Palmer, M., et al. (1993) J. Biol. Chem. 268, 11959) were reacted with the C-specific fluorophore acrylodan, which acted as an energy donor. The chosen acceptor was N-(7-nitrobenz-2-oxa-13-diazol-4-yl)-1,2-bis(hexadecanoyl) -sn-glycero-3-phosphoethanolamine (NBD-PE). Measurement of the degree of donor quenching with increasing NBD-PE in the inner bilayer leaflet enables the distance of closest approach between donor and acceptor to be estimated. For toxin labeled with acrylodan at position 130 (in the hinge region), this distance is approximately 5 +/- 2 Angstrom, showing that the probe is close to the inner surface of the liposomes. A second probe labeled at position 69 (in the N-terminal domain) shows negligible energy transfer, indicating a distance of closest approach >40 Angstrom. This implies that this N-terminal region remains ''outside'' the liposome. We propose a model in which the central region of the alpha-toxin inserts into the membrane and possibly participates in forming the wall of the pore.
Resumo:
ZnO:Eu3+ (0.1 and 3 at%) with average particle size of 500 nm were prepared by the Pechini method. Photoluminescence spectroscopy evidences that there is no energy transfer between ZnO and Eu3+ ion. The emission spectrum at 77 K shows that Eu3+ ions occupy at least three different sites in ZnO:Eu 3 at% sample. The experimental intensity parameter Omega(2) indicates that Eu3+ ions in the sample doped with 3 at% occupy sites where 4-configurational levels can better mix with opposite-parity states than those in the sample doped with 0.1 at%. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Enhanced frequency upconversion (UC) emission was studied in Yb3+/Er3+ co-doped PbO-GeO2 glass containing silver nanoparticles (NPs). Optical excitation was achieved with a laser operating at 980 nm in resonance with the Yb3+ transition F-4(5/2)-> F-4(7/2). The intensity of the whole UC spectrum from 400 to 700 nm was intensified due to the influence of silver NPs. The green and red emissions were enhanced by more than 300%. Emission bands centered at 408 nm and 480 nm were also detected corresponding to the H-2(9/2)-> I-4(15/2) and F-4(7/2)-> I-4(15/2) transitions of Er3+ ion. An intensity enhancement of approximate to 150% due to the NPs was measured. For the first time the influence of silver NPs on the blue emission of Yb3+/Er3+ co-doped PbO-GeO2 glass is reported. The large enhancement in the whole UC spectrum is due to the increased local field in the Er3+ ions locations and the proximity between the luminescence wavelengths and the NPs surface plasmon resonance. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Infrared-to-visible and infrared-to-infrared frequency upconversion processes in Yb3+-Tm3+ doped PbO-GeO2 glasses containing silver nanoparticles (NPs) were investigated. The experiments were performed by exciting the samples with a diode laser operating at 980 nm (in resonance with the Yb3+ transition F-2(7/2)-> F-2(5/2)) and observing the photoluminescence (PL) in the visible and infrared regions due to energy transfer from Yb3+ to Tm3+ ions followed by excited state absorption in the Tm3+ ions. The intensified local field in the vicinity of the metallic NPs contributes for enhancement in the PL intensity at 480 nm (Tm3+ :(1)G(4)-> H-3(6)) and at 800 nm (Tm3+ : H-3(4) -> H-3(6)). (C) 2009 American Institute of Physics. [doi:10.1063/1.3211300]
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present photoluminescence and decay of photo excited conductivity data for sol-gel SnO(2) thin films doped with rare earth ions Eu(3+) and Er(3+), a material with nanoscopic crystallites. Photoluminescence spectra are obtained under excitation with several monochromatic light sources, such as Kr(+) and Ar(+) lasers, Xe lamp plus a selective monochromator with UV grating, and the fourth harmonic of a Nd: YAG laser (4.65eV), which assures band-to-band transition and energy transfer to the ion located at matrix sites, substitutional to Sn(4+). The luminescence structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at grain boundary layer, where it is placed in asymmetric sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference between capture energy and grain boundary barrier is not so evident, even though the luminescence spectra are rather distinct.