840 resultados para through pores formation
Resumo:
In this thesis we will disclose the results obtained from the diastereoisomeric salt formation (n salt, p salt and p1,n1 salt) between non-racemic trans-chrysanthemic acid (trans-ChA) and pure enantiomers of threo-2-dimethylamino-1-phenyl-1,3-propanediol (DMPP). The occurrence of p1,n1 salt formation can have profound effects on enantiomer separation of scalemic (non-racemic) mixtures. This phenomenon when accompanied by substrate self-association impedes the complete recovery of the major enantiomer through formation of an inescapable racemate cage. A synthetic sequence for the asymmetric synthesis of bicyclo[3.2.0]heptanones and bicyclo[3.2.0]hept-3-en-6-ones through a cycloaddition strategy is reported. The fundamental step is a [2+2]-cycloaddition of an enantiopure amide derived from the reaction between a set of acids and an oxazolidinone as the chiral auxiliary. The inter- and intramolecular cycloaddition of in situ-generated keteniminium salts gives bicycles with a good enantioselection. A key intermediate of Iloprost, a chemically stable and biologically active mimic of prostacyclin PGI2 is synthesized following a ‘green approach’. An example of simple optical resolution of this racemic intermediate involving the diastereoisomeric salt formation is described.
Resumo:
This experimental thesis concerns the study of the long-term behaviour of ancient bronzes recently excavated from burial conditions. The scientific interest is to clarify the effect of soil parameters on the degradation mechanisms of ancient bronze alloy. The work took into consideration bronzes recovered from the archaeological sites in the region of Dobrudja, Romania. The first part of research work was dedicated to the characterization of bronze artefacts using non destructive (micro-FTIR, reflectance mode) and micro-destructive (based on sampling and analysis of a stratigraphical section by OM and SEM-EDX) methods. Burial soils were geologically classified and analyzed by chemical methods (pH, conductivity, anions content). Most of objects analyzed showed a coarse and inhomogeneous corroded structure, often made up of several corrosion layers. This has been explained by the silt nature of soils, which contain low amount of clay and are, therefore, quite accessible to water and air. The main cause of a high dissolution rate of bronze alloys is the alternate water saturation and instauration of the soil, for example on a seasonal scale. Moreover, due to the vicinity of the Black Sea, the detrimental effect of chlorine has been evidenced for few objects, which were affected by the bronze disease. A general classification of corrosion layers was achieved by comparing values of the ratio Cu/Sn in the alloy and in the patina. Decuprification is a general trend, and enrichment of copper within the corrosion layers, due to the formation of thick layers of cuprite (Cu2O), is pointed out as well. Uncommon corrosion products and degradation patterns were presented as well, and they are probably due to peculiar local conditions taking place during the burial time, such as anaerobic conditions or fluctuating environmental conditions. In order to acquire a better insight into the corrosion mechanisms, the second part of the thesis has regarded simulation experiments, which were conducted on commercial Cu-Sn alloys, whose composition resembles those of ancient artefacts one. Electrochemical measurements were conducted in natural electrolytes, such as solutions extracted from natural soil (sampled at the archaeological sites) and seawater. Cyclic potentiodynamic experiments allowed appreciating the mechanism of corrosion in both cases. Soil extract’s electrolyte has been evaluated being a non aggressive medium, while artificial solution prepared by increasing the concentration of anions caused the pitting corrosion of the alloy, which is demonstrated by optical observations. In particular, electrochemical impedance spectroscopy allows assessing qualitatively the nature of corroded structures formed in soil and seawater. A double-structured layer is proposed, which differ, in the two cases, for the nature of the internal passive layer, which result defectiveness and porous in case of seawater.
Resumo:
Ion channels are pore-forming proteins that regulate the flow of ions across biological cell membranes. Ion channels are fundamental in generating and regulating the electrical activity of cells in the nervous system and the contraction of muscolar cells. Solid-state nanopores are nanometer-scale pores located in electrically insulating membranes. They can be adopted as detectors of specific molecules in electrolytic solutions. Permeation of ions from one electrolytic solution to another, through a protein channel or a synthetic pore is a process of considerable importance and realistic analysis of the main dependencies of ion current on the geometrical and compositional characteristics of these structures are highly required. The project described by this thesis is an effort to improve the understanding of ion channels by devising methods for computer simulation that can predict channel conductance from channel structure. This project describes theory, algorithms and implementation techniques used to develop a novel 3-D numerical simulator of ion channels and synthetic nanopores based on the Brownian Dynamics technique. This numerical simulator could represent a valid tool for the study of protein ion channel and synthetic nanopores, allowing to investigate at the atomic-level the complex electrostatic interactions that determine channel conductance and ion selectivity. Moreover it will provide insights on how parameters like temperature, applied voltage, and pore shape could influence ion translocation dynamics. Furthermore it will help making predictions of conductance of given channel structures and it will add information like electrostatic potential or ionic concentrations throughout the simulation domain helping the understanding of ion flow through membrane pores.
Resumo:
This thesis is devoted to the study of the properties of high-redsfhit galaxies in the epoch 1 < z < 3, when a substantial fraction of galaxy mass was assembled, and when the evolution of the star-formation rate density peaked. Following a multi-perspective approach and using the most recent and high-quality data available (spectra, photometry and imaging), the morphologies and the star-formation properties of high-redsfhit galaxies were investigated. Through an accurate morphological analyses, the built up of the Hubble sequence was placed around z ~ 2.5. High-redshift galaxies appear, in general, much more irregular and asymmetric than local ones. Moreover, the occurrence of morphological k-correction is less pronounced than in the local Universe. Different star-formation rate indicators were also studied. The comparison of ultra-violet and optical based estimates, with the values derived from infra-red luminosity showed that the traditional way of addressing the dust obscuration is problematic, at high-redshifts, and new models of dust geometry and composition are required. Finally, by means of stacking techniques applied to rest-frame ultra-violet spectra of star-forming galaxies at z~2, the warm phase of galactic-scale outflows was studied. Evidence was found of escaping gas at velocities of ~ 100 km/s. Studying the correlation of inter-stellar absorption lines equivalent widths with galaxy physical properties, the intensity of the outflow-related spectral features was proven to depend strongly on a combination of the velocity dispersion of the gas and its geometry.
Resumo:
In first part we have developed a simple regiocontrolled protocol of 1,3-DC to get ring fused pyrazole derivatives. These pyrazole derivatives were synthesized using 1,3-DC between nitrile imine and various dipolarophiles such as alkynes, cyclic α,β-ketones, lactones, thiocatones and lactums. The reactions were found to be highly regiospecific. In second part we have discussed about helicene, its properties, synthesis and applications as asymmetric catalyst.Due to inherent chirality, herein we have made an attempt to synthesize the helicene-thiourea based catalyst for asymmetric catalysis. The synthesis involved formation of two key intermediates viz, bromo-phenanthrene 5 and a vinyl-naphthalene 10. The coupling of these two intermediates leads to formation of hexahelicene.
Resumo:
„Ich bin, weil du bist“ – so lautet eines der Schlüsselzitate in What I Loved, dem 2003 erschienenen dritten Roman der zeitgenössischen amerikanischen Autorin Siri Hustvedt. Die Bedeutung von Beziehung und Interaktion für die Identitätsbildung spielt eine zentrale Rolle nicht nur in diesem Roman, sondern auch in ihrem Gesamtwerk, das vier Romane, ein memoir, drei Essay-Sammlungen und einen Lyrikband umfasst. Hustvedt erforscht die Identität als ein vielschichtiges Produkt bewusster und unbewusster Verknüpfungen innerhalb der sozialen und biologischen Umwelt. Das Bewusstsein wird als eine dialogisch geprägte Entität gezeigt, dessen Identität erst durch die Beziehung auf ein Anderes geformt werden kann. Um dem Mysterium der menschlichen Identitätsfindung nachzuspüren, bedient sich Hustvedt sowohl philosophischer, psychoanalytischer, biologischer als auch kunsttheoretischer Diskurse. In ihren Romanen stellt sich die Frage nach der Erklärung von Identität als komplexe Problematik dar: Ist die Beziehung zu anderen Menschen vor allem durch unsere Entwicklung als Kind und die Nähe zu Bezugspersonen geprägt? In welchem Ausmaß ist das Empfinden von Subjektivität beeinflusst von körperlichen und unbewussten Mechanismen? Inwiefern ist die Wahrnehmung visueller Kunst eine Kooperation zwischen Betrachter und Künstler? rnDiesen und anderen Fragen geht diese Dissertation nach, indem sie Hustvedts Werk als Anlass für eine Analyse intersubjektiver Strukturen der Identität nimmt. Die Intersubjektivitätsphiloso¬phien von Hegel, Buber, Bakhtin, Husserl, und Merleau-Ponty dienen hierbei als Ausgangspunkt für die Interpretation von relationaler Identität in Hustvedts Werken. Die Dissertation konzentriert sich auf Hustvedts Darstellung der Beziehung zwischen Selbst und Anderem in der Photographie und in der Malerei, der Überschreitung von Körpergrenzen in Hysterie und Anorexie sowie der Auswirkung des Verlustes von Bezugspersonen auf die persönliche Identität. Entscheidend für den Hustvedtschen Kunstbegriff ist das Zusammenspiel von Kunstobjekt, Künstler und Betrachter. Die Grenzen zwischen Innerem und Äußeren werden aufgelöst: mal wird der Rezipient Teil des Kunstwerks, mal verschmilzt der Künstler förmlich mit seinem Objekt. Auch hier wird wiederum deutlich, dass Identität nur in Wechselbeziehung und als zwischenmenschliche Kooperation entsteht. Hustvedt betritt durch ihre einzigartige Auseinandersetzung mit den Wechselbeziehungen und fragilen Grenzen zwischen Ich und Umwelt Neuland auf dem Gebiet der literarischen Identitätsforschung, da sie ihr Prinzip des „mixing,“ des unausweichlichen Eindringens fremder Substanz in die eigene Identität, aus dem Blickwinkel dieser verschiedenen Erklärungsansätze beleuchtet. rn
Resumo:
Bioconjugation of peptides and asymmetric synthesis of gem-difluoromethylene compounds are areas of the modern organic chemistry for which mild and selective methods continue to be developed. This thesis reports new methodologies for these two areas based on the use of stabilized carbenium ions. The reaction that makes the bioconjugation of peptides possible takes place via the direct nucleophilic substitution of alcohols and is driven by the spontaneous formation of stabilized carbenium ions in water. By reacting with the thiol group of cysteine in very mild conditions and with a high selectivity, these carbenium ions allow the site-specific ligation of polypeptides containing cysteine and their covalent derivatization with functionalized probes. The ligation of the indole ring of tryptophan, an emerging target in bioconjugation, is also shown and takes place in the same conditions. The second area investigated is the challenging access to optically active gem-difluoromethylene compounds. We describe a methodology relying on the synthesis of enantioenriched 1,3-benzodithioles intermediates that are shown to be precursors of the corresponding gem-difluoromethylene analogues by oxidative desulfurization-fluorination. This synthesis takes advantage of the highly enantioselective organocatalytic α-alkylation of aldehydes with the benzodithiolylium ion and of the wide possibilities of synthetic transformations offered by the 1,3-benzodithiole group. This approach allows the asymmetric access to complex gem-difluoromethylene compounds through a late-stage fluorination step, thus avoiding the use of fluorinated building blocks.
Resumo:
A unique characteristic of soft matter is its ability to self-assemble into larger structures. Characterizing these structures is crucial for their applications. In the first part of this work, I investigated DNA-organic hybrid material by means of Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Cross-Correlation Spectroscopy (FCCS). DNA-organic hybrid materials, a novel class of hybrid materials composed of synthetic macromolecules and oligodeoxynucleotide segmenta, are mostly amphiphilic and can self-assemble into supramolecular structures in aqueous solution. A hybrid material of a fluorophore, perylenediimide (PDI), and a DNA segment (DNA-PDI) has been developed in Prof. A. Hermann’s group (University of Groningen). This novel material has the ability to form aggregates through pi-pi stacking between planar PDIs and can be traced in solution due to the fluorescence of PDI. I have determined the diffusion coefficient of DNA-PDI conjugates in aqueous solution by means of FCS. In addition, I investigated whether such DNA-PDIs form aggregates with certain structure, for instance dimers. rnOnce the DNA hybrid material self-assemble into supermolecular structures for instance into micelles, the single molecules do not necessarily stay in one specific micelle. Actually, a single molecule may enter and leave micelles constantly. The average residence time of a single molecule in a certain micelle depends on the nature of the molecule. I have chosen DNA-b-polypropylene oxide (PPO) as model molecules and investigated the residence time of DNA-b-PPO molecules in their according micelles by means of FCCS.rnBesides the DNA hybrid materials, polymeric colloids can also form ordered structures once they are brought to an air/water interface. Here, hexagonally densely packed monolayers can be generated. These monolayers can be deposited onto different surfaces as coating layers. In the second part of this work, I investigated the mechanical properties of such colloidal monolayers using micromechanical cantilevers. When a coating layer is deposited on a cantilever, it can modify the elasticity of the cantilever. This variation can be reflected either by a deflection or by a resonance frequency shift of the cantilever. In turn, detecting these changes provides information about the mechanical properties of the coating layer. rnIn the second part of this work, polymeric colloidal monolayers were coated on a cantilever and homogenous polymer films of a few hundred nanometers in thickness were generated from these colloidal monolayers by thermal annealing or organic vapor annealing. Both the film formation process and the mechanical properties of these resulting homogenous films were investigated by means of cantilever. rnElastic property changes of the coating film, for example upon absorption of organic vapors, induce a deflection of the cantilever. This effect enables a cantilever to detect target molecules, when the cantilever is coated with an active layer with specific affinity to target molecules. In the last part of this thesis, I investigated the applicability of suitably functionalized micromechanical cantilevers as sensors. In particular, glucose sensitive polymer brushes were grafted on a cantilever and the deflection of this cantilever was measured during exposure to glucose solution. rn
Resumo:
In this Thesis, we study the physical properties and the cosmic evolution of AGN and their host galaxies since z∼3. Our analysis exploits samples of star forming galaxies detected with Herschel at far-IR wavelengths (from 70 up to 500 micron) in different extragalactic surveys, such as COSMOS and the deep GOODS (South and North) fields. The broad-band ancillary data available in COSMOS and the GOODS fields, allows us to implement Herschel and Spitzer photometry with multi-wavelength ancillary data. We perform a multicomponent SED-fitting decomposition to decouple the emission due to star formation from that due to AGN accretion, and to estimate both host-galaxy parameters (such as stellar mass, M* and star formation rate, SFR), and nuclear intrinsic bolometric luminosities. We use the individual estimates of AGN bolometric luminosity obtained through SED-fitting decomposition to reconstruct the redshit evolution of the AGN bolometric luminosity function since z∼3. The resulting trends are used to estimate the overall AGN accretion rate density at different cosmic epochs and to trace the first ever estimate of the AGN accretion history from an IR survey. Later on, we focus our study on the connection between AGN accretion and integrated galaxy properties. We analyse the relationships of AGN accretion with galaxy properties in the SFR-M* plane and at different cosmic epochs. Finally, we infer what is the parameter that best correlates with AGN accretion, comparing our results with previous studies and discussing their physical implications in the context of current scenarios of AGN/galaxy evolution.
Resumo:
Die technische Silikatproduktion erfordert in der Regel hohe Temperaturen und extreme pH-Werte. In der Natur hingegen haben insbesondere Kieselschwämme die außergewöhnliche Fähigkeit, ihr Silikatskelett, das aus einzelnen sogenannten Spiculae besteht, enzymatisch mittels des Proteins Silicatein zu synthetisieren. rnIm Inneren der Spiculae, im zentralen Kanal, befindet sich das Axialfilament, welches hauptsächlich aus Silicatein-α aufgebaut ist. Mittels Antikörperfärbungen und Elektronenmikroskopischen Analysen konnte festgestellt werden, dass Silicatein in mit Kieselsäure-gefüllten Zellorganellen (silicasomes) nachzuweisen ist. Mittels dieser Vakuolen kann das Enzym und die Kieselsäure aus der Zelle zu den Spiculae im extrazellulären Raum befördert werden, wo diese ihre endgültige Länge und Dicke erreichen. Zum ersten Mal konnte nachgewiesen werden, dass rekombinant hergestelltes Silicatein-α sowohl als Siliciumdioxid-Polymerase als auch Siliciumdioxid-Esterase wirkt. Mittels Massenspektroskopie konnte die enzymatische Polymerisation von Kieselsäure nachverfolgt werden. Durch Spaltung der Esterbindung des künstlichen Substrates Bis(p-aminophenoxy)-dimethylsilan war es möglich kinetische Parameter der Siliciumdioxid-Esterase-Aktivität des rekombinanten Silicateins zu ermitteln.rnZu den größten biogenen Silikatstukuren auf der Erde gehören die Kieselnadeln der Schwammklasse Hexactinellida. Nadelextrakte aus den Schwammklassen Demospongien (S. domuncula) und Hexactinellida (M. chuni) wurden miteinander verglichen um die potentielle Existenz von Silicatein oder Silicatein-ähnliche Molekülen und die dazu gehörige proteolytischen Aktivität nachzuweisen. Biochemische Analysen zeigten, dass das 27 kDA große isolierte Polypeptid in Monoraphis mehrere gemeinsame Merkmale mit den Silicateinen der Demospongien teilt. Dazu gehören die Größe und die Proteinase-Aktivität. rnUm die Frage zu klären, ob das axiale Filament selbst zur Formbildung der Skelettelemente beiträgt, wurde ein neues mildes Extraktionsverfahren eingeführt. Dieses Verfahren ermöglichte die Solubilisierung des nativen Silicateins aus den Spiculae. Die isolierten Silicateine lagen als Monomere (24 kDa) vor, die Dimere durch nicht-kovalente Bindungen ausbildeten. Darüber hinaus konnten durch PAGE-Gelelektrophorese Tetramere (95 kDa) und Hexamere (135 kDa) nachgewiesen werden. Die Monomere zeigten eine beträchtliche proteolytische Aktivität, die sich während der Polymerisationsphase des Proteins weiter erhöhte. Mit Hilfe der Lichtmikroskopie und Elektronenmikroskopie (TEM) konnte die Assemblierung der Proteine zu filamentartigen Strukturen gezeigt werden. Die Selbstorganisation der Silicatein-α-Monomeren scheint eine Basis für Form- und Musterbildung der wachsenden Nadeln zu bilden.rn Um die Rolle des kürzlich entdeckten Proteins Silintaphin-1, ein starker Interaktionspartner des Silicatein-α, während der Biosilifizierung zu klären, wurden Assemblierungs-Experimente mit den rekombinanten Proteinen in vitro durchgeführt. Zusätzlich wurde deren Effekt auf die Biosilikatsynthese untersucht. Elektronenmikroskopische Analysen ergaben, dass rekombinantes Silicatein-α zufällig verteilte Aggregate bildet, während die Koinkubation beider Proteine (molekulares Verhältnis 4:1) über fraktal artige Strukturen zu Filamenten führt. Auch die enzymatische Aktivität der Silicatein-α-vermittelte Biosilikatsynthese erhöhte sich in Gegenwart von Silintaphin-1 um das 5,3-fache. rn
Resumo:
The thesis analyses the making of the Shiite middle- and upper/entrepreneurial-class in Lebanon from the 1960s till the present day. The trajectory explores the historical, political and social (internal and external) factors that brought a sub-proletariat to mobilise and become an entrepreneurial bourgeoisie in the span of less than three generations. This work proposes the main theoretical hypothesis to unpack and reveal the trajectory of a very recent social class that through education, diaspora, political and social mobilisation evolved in a few years into a very peculiar bourgeoisie: whereas Christian-Maronite middle class practically produced political formations and benefited from them and from Maronite’s state supremacy (National Pact, 1943) reinforcing the community’s status quo, Shiites built their own bourgeoisie from within, and mobilised their “cadres” (Boltanski) not just to benefit from their renovated presence at the state level, but to oppose to it. The general Social Movement Theory (SMT), as well as a vast amount of the literature on (middle) class formation are therefore largely contradicted, opening up new territories for discussion on how to build a bourgeoisie without the state’s support (Social Mobilisation Theory, Resource Mobilisation Theory) and if, eventually, the middle class always produces democratic movements (the emergence of a social group out of backwardness and isolation into near dominance of a political order). The middle/upper class described here is at once an economic class related to the control of multiple forms of capital, and produced by local, national, and transnational networks related to flows of services, money, and education, and a culturally constructed social location and identity structured by economic as well as other forms of capital in relation to other groups in Lebanon.
Resumo:
The kinematics is a fundamental tool to infer the dynamical structure of galaxies and to understand their formation and evolution. Spectroscopic observations of gas emission lines are often used to derive rotation curves and velocity dispersions. It is however difficult to disentangle these two quantities in low spatial-resolution data because of beam smearing. In this thesis, we present 3D-Barolo, a new software to derive the gas kinematics of disk galaxies from emission-line data-cubes. The code builds tilted-ring models in the 3D observational space and compares them with the actual data-cubes. 3D-Barolo works with data at a wide range of spatial resolutions without being affected by instrumental biases. We use 3D-Barolo to derive rotation curves and velocity dispersions of several galaxies in both the local and the high-redshift Universe. We run our code on HI observations of nearby galaxies and we compare our results with 2D traditional approaches. We show that a 3D approach to the derivation of the gas kinematics has to be preferred to a 2D approach whenever a galaxy is resolved with less than about 20 elements across the disk. We moreover analyze a sample of galaxies at z~1, observed in the H-alpha line with the KMOS/VLT spectrograph. Our 3D modeling reveals that the kinematics of these high-z systems is comparable to that of local disk galaxies, with steeply-rising rotation curves followed by a flat part and H-alpha velocity dispersions of 15-40 km/s over the whole disks. This evidence suggests that disk galaxies were already fully settled about 7-8 billion years ago. In summary, 3D-Barolo is a powerful and robust tool to separate physical and instrumental effects and to derive a reliable kinematics. The analysis of large samples of galaxies at different redshifts with 3D-Barolo will provide new insights on how galaxies assemble and evolve throughout cosmic time.
Resumo:
The dissertation entitled "Tuning of magnetic exchange interactions between organic radicals through bond and space" comprises eight chapters. In the initial part of chapter 1, an overview of organic radicals and their applications were discussed and in the latter part motivation and objective of thesis was described. As the EPR spectroscopy is a necessary tool to study organic radicals, the basic principles of EPR spectroscopy were discussed in chapter 2. rnAntiferromagnetically coupled species can be considered as a source of interacting bosons. Consequently, such biradicals can serve as molecular models of a gas of magnetic excitations which can be used for quantum computing or quantum information processing. Notably, initial small triplet state population in weakly AF coupled biradicals can be switched into larger in the presence of applied magnetic field. Such biradical systems are promising molecular models for studying the phenomena of magnetic field-induced Bose-Einstein condensation in the solid state. To observe such phenomena it is very important to control the intra- as well as inter-molecular magnetic exchange interactions. Chapters 3 to 5 deals with the tuning of intra- and inter-molecular exchange interactions utilizing different approaches. Some of which include changing the length of π-spacer, introduction of functional groups, metal complex formation with diamagnetic metal ion, variation of radical moieties etc. During this study I came across two very interesting molecules 2,7-TMPNO and BPNO, which exist in semi-quinoid form and exhibits characteristic of the biradical and quinoid form simultaneously. The 2,7-TMPNO possesses the singlet-triplet energy gap of ΔEST = –1185 K. So it is nearly unrealistic to observe the magnetic field induced spin switching. So we studied the spin switching of this molecule by photo-excitation which was discussed in chapter 6. The structural similarity of BPNO with Tschitschibabin’s HC allowed us to dig the discrepancies related to ground state of Tschitschibabin’s hydrocarbon(Discussed in chapter 7). Finally, in chapter 8 the synthesis and characterization of a neutral paramagnetic HBC derivative (HBCNO) is discussed. The magneto liquid crystalline properties of HBCNO were studied by DSC and EPR spectroscopy.rn
Resumo:
Prediction of malignant behaviour of pheochromocytomas/sympathetic paragangliomas (PCCs/PGLs) is very difficult if not impossible on a histopathological basis. In a familial setting, it is well known that succinate dehydrogenase subunit B (SDHB)-associated PCC/PGL very often metastasise. Recently, absence of SDHB expression as measured through immunohistochemistry was shown to be an excellent indicator of the presence of an SDH germline mutation in PCC/PGL. SDHB loss is believed to lead to tumour formation by activation of hypoxia signals. To clarify the potential use of SDHB immunohistochemistry as a marker of malignancy in PCC/PGL and its association with classic hypoxia signalling we examined SDHB, hypoxia inducible factor-1 (Hif-1 ) and its targets CA-9 and GLUT-1 expression on protein level using immunohistochemistry on a tissue micro array on a series of familial and sporadic tumours of 115 patients. Survival data was available for 66 patients. SDHB protein expression was lost in the tumour tissue of 12 of 99 patients. Of those 12 patients, 5 had an SDHB germline mutation, in 4 patients no germline mutation was detected and mutational status remained unknown in parts in 3 patients. Loss of SDHB expression was not associated with increased classic hypoxia signalling as detected by Hif-1 , CA-9 or GLUT-1 staining. Loss of SDHB expression was associated with an adverse outcome. The lack of correlation of SDHB loss with classic hypoxia signals argues against the current hypoxia hypothesis in malignant PCC/PGL. We suggest SDHB protein loss as a marker of adverse outcome both in sporadic and in familial PCC/PGL.
Resumo:
In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points. The aim of the present study was to evaluate the influence of cell clustering on vital osteoblast cell-cell communication and adhesion molecules, connexin 43 (cx43) and N-cadherin (N-cad) as assessed by immunofluorescence imaging, real-time PCR and Western blot analysis. In addition, differentiation markers of osteoblasts were quantified using alkaline phosphatase, osteocalcin and von Kossa staining. EMD significantly increased the expression of connexin 43 and N-cadherin at early time points ranging from 2 to 5 days. Protein expression was localized to cell membranes when compared to control groups. Alkaline phosphatase activity was also significantly increased on EMD-coated samples at 3, 5 and 7 days post seeding. Interestingly, higher activity was localized to cell cluster regions. There was a 3 fold increase in osteocalcin and bone sialoprotein mRNA levels for osteoblasts cultured on EMD-coated culture dishes. Moreover, EMD significantly increased extracellular mineral deposition in cell clusters as assessed through von Kossa staining at 5, 7, 10 and 14 days post seeding. We conclude that EMD up-regulates the expression of vital osteoblast cell-cell communication and adhesion molecules, which enhances the differentiation and mineralization activity of osteoblasts. These findings provide further support for the clinical evidence that EMD increases the speed and quality of new bone formation in vivo.