992 resultados para thermal radiation
Resumo:
The calculation of elasticity parameters by sonic and ultra sonic wave propagation in saturated soils using Biot's theory needs the following variables : forpiation density and porosity (p, ø), compressional and shear wave velocities (Vp, Vs), fluid density, viscosity and compressibility (Pfi Ilfi Ki), matrix density and compressibility (p" K), The first four parameters can be determined in situ using logging probes. Because fluid and matrix characteristics are not modified during core extraction, they can be obtained through laboratory measurements. All parameters necessitate precise calibrations in various environments and for specific range of values encountered in soils. The slim diameter of boreholes in shallow geophysics and the high cost of petroleum equipment demand the use of specific probes, which usually only give qualitative results. The measurement 'of density is done with a gamma-gamma probe and the measurement of hydrogen index, in relation to porosity, by a neutron probe. The first step of this work has been carried out in synthetic formations in the laboratory using homogeneous media of known density and porosity. To establish borehole corrections different casings have been used. Finally a comparison between laboratory and in situ data in cored holes of known geometry and casing has been performed.
Resumo:
The interest in solar ultraviolet (UV) radiation from the scientific community and the general population has risen significantly in recent years because of the link between increased UV levels at the Earth's surface and depletion of ozone in the stratosphere. As a consequence of recent research, UV radiation climatologies have been developed, and effects of some atmospheric constituents (such as ozone or aerosols) have been studied broadly. Correspondingly, there are well-established relationships between, for example, total ozone column and UV radiation levels at the Earth's surface. Effects of clouds, however, are not so well described, given the intrinsic difficulties in properly describing cloud characteristics. Nevertheless, the effect of clouds cannot be neglected, and the variability that clouds induce on UV radiation is particularly significant when short timescales are involved. In this review we show, summarize, and compare several works that deal with the effect of clouds on UV radiation. Specifically, works reviewed here approach the issue from the empirical point of view: Some relationship between measured UV radiation in cloudy conditions and cloud-related information is given in each work. Basically, there are two groups of methods: techniques that are based on observations of cloudiness (either from human observers or by using devices such as sky cameras) and techniques that use measurements of broadband solar radiation as a surrogate for cloud observations. Some techniques combine both types of information. Comparison of results from different works is addressed through using the cloud modification factor (CMF) defined as the ratio between measured UV radiation in a cloudy sky and calculated radiation for a cloudless sky. Typical CMF values for overcast skies range from 0.3 to 0.7, depending both on cloud type and characteristics. Despite this large dispersion of values corresponding to the same cloud cover, it is clear that the cloud effect on UV radiation is 15–45% lower than the cloud effect on total solar radiation. The cloud effect is usually a reducing effect, but a significant number of works report an enhancement effect (that is increased UV radiation levels at the surface) due to the presence of clouds. The review concludes with some recommendations for future studies aimed to further analyze the cloud effects on UV radiation
Resumo:
The long-term mean properties of the global climate system and those of turbulent fluid systems are reviewed from a thermodynamic viewpoint. Two general expressions are derived for a rate of entropy production due to thermal and viscous dissipation (turbulent dissipation) in a fluid system. It is shown with these expressions that maximum entropy production in the Earth s climate system suggested by Paltridge, as well as maximum transport properties of heat or momentum in a turbulent system suggested by Malkus and Busse, correspond to a state in which the rate of entropy production due to the turbulent dissipation is at a maximum. Entropy production due to absorption of solar radiation in the climate system is found to be irrelevant to the maximized properties associated with turbulence. The hypothesis of maximum entropy production also seems to be applicable to the planetary atmospheres of Mars and Titan and perhaps to mantle convection. Lorenz s conjecture on maximum generation of available potential energy is shown to be akin to this hypothesis with a few minor approximations. A possible mechanism by which turbulent fluid systems adjust themselves to the states of maximum entropy production is presented as a selffeedback mechanism for the generation of available potential energy. These results tend to support the hypothesis of maximum entropy production that underlies a wide variety of nonlinear fluid systems, including our planet as well as other planets and stars
Resumo:
Challenging environmental conditions, including heat and humidity, cold, and altitude, pose particular risks to the health of Olympic and other high-level athletes. As a further commitment to athlete safety, the International Olympic Committee (IOC) Medical Commission convened a panel of experts to review the scientific evidence base, reach consensus, and underscore practical safety guidelines and new research priorities regarding the unique environmental challenges Olympic and other international-level athletes face. For non-aquatic events, external thermal load is dependent on ambient temperature, humidity, wind speed and solar radiation, while clothing and protective gear can measurably increase thermal strain and prompt premature fatigue. In swimmers, body heat loss is the direct result of convection at a rate that is proportional to the effective water velocity around the swimmer and the temperature difference between the skin and the water. Other cold exposure and conditions, such as during Alpine skiing, biathlon and other sliding sports, facilitate body heat transfer to the environment, potentially leading to hypothermia and/or frostbite; although metabolic heat production during these activities usually increases well above the rate of body heat loss, and protective clothing and limited exposure time in certain events reduces these clinical risks as well. Most athletic events are held at altitudes that pose little to no health risks; and training exposures are typically brief and well-tolerated. While these and other environment-related threats to performance and safety can be lessened or averted by implementing a variety of individual and event preventative measures, more research and evidence-based guidelines and recommendations are needed. In the mean time, the IOC Medical Commission and International Sport Federations have implemented new guidelines and taken additional steps to mitigate risk even further.
Resumo:
Microquasars are potential candidates to produce a non-negligible fraction of the observed galactic cosmic rays. The protons accelerated at the jet termination shock interact with the interstellar medium and may produce detectable fluxes of extended emission at different energy bands: high-energy and very high-energy gamma-rays produced by neutral pion-decay, synchrotron and bremsstrahlung emission in a wide energy range generated by the secondary electrons produced by charged pion-decay. We discuss the association between this scenario and some of the unidentified EGRET sources in the galactic plane.
Resumo:
Context.LS 5039 has been observed with several X-ray instruments so far showing quite steady emission in the long term and no signatures of accretion disk. The source also presents X-ray variability at orbital timescales in flux and photon index. The system harbors an O-type main sequence star with moderate mass-loss. At present, the link between the X-rays and the stellar wind is unclear. Aims.We study the X-ray fluxes, spectra, and absorption properties of LS 5039 at apastron and periastron passages during an epoch of enhanced stellar mass-loss, and the long term evolution of the latter in connection with the X-ray fluxes. Methods.New XMM-Newton observations were performed around periastron and apastron passages in September 2005, when the stellar wind activity was apparently higher. April 2005 Chandra observations on LS 5039 were revisited. Moreover, a compilation of H EW data obtained since 1992, from which the stellar mass-loss evolution can be approximately inferred, was carried out. Results.XMM-Newton observations show higher and harder emission around apastron than around periastron. No signatures of thermal emission or a reflection iron line indicating the presence of an accretion disk are found in the spectrum, and the hydrogen column density () is compatible with being the same in both observations and consistent with the interstellar value. 2005 Chandra observations show a hard X-ray spectrum, and possibly high fluxes, although pileup effects preclude conclusive results from being obtained. The H EW shows yearly variations of 10%, and does not seem to be correlated with X-ray fluxes obtained at similar phases, unlike what is expected in the wind accretion scenario. Conclusions.2005 XMM-Newton and Chandra observations are consistent with 2003 RXTE/PCA results, namely moderate flux and spectral variability at different orbital phases. The constancy of the seems to imply that either the X-ray emitter is located at 1012 cm from the compact object, or the density in the system is 3 to 27 times smaller than that predicted by a spherical symmetric wind model. We suggest that the multiwavelength non-thermal emission of LS 5039 is related to the observed extended radio jets and is unlikely to be produced inside the binary system.
Resumo:
L'hormonoradiothérapie concomitante est utilisée depuis plusieurs années en pratique clinique quotidienne dans les cancers localement évolués de la prostate. Le transfert de ce concept en pathologie mammaire a été très peu rapporté dans la littérature, mais semble pourtant licite devant l'hormonodépendance fréquente des cancers du sein et la synergie potentielle de ces deux armes thérapeutiques. En situation adjuvante, deux stratégies sont actuellement utilisées : la prescription d'un inhibiteur de l'aromatase d'emblée ou après un délai plus ou moins long de tamoxifène. En pratique, ces molécules peuvent donc interagir avec la radiothérapie adjuvante. Les études rétrospectives récemment publiées n'ont pas mis en évidence de différence significative sur l'incidence des évènements, notamment locorégionaux, de l'association concomitante ou séquentielle du tamoxifène à la radiothérapie. La toxicité de l'association reste discutable en termes de fibroses sous-cutanée et pulmonaire. Il semble que le tamoxifène aggraverait les séquelles postradiques uniquement chez les patientes prédisposées à souffrir d'effets tardifs de la radiothérapie et identifiées par un test prédictif biologique. La prudence reste donc encore de mise du moins pour ces patientes. Cet article détaille les avantages et les risques de l'utilisation concomitante de la radiothérapie et de l'hormonothérapie adjuvantes des cancers localisés du sein. Combined radiation and hormone therapies have become common clinical practice in recent years for locally-advanced prostate cancers. The use of such concomitant therapy in the treatment of breast disease has been infrequently reported in the literature, but seems justified given the common hormonal dependence of breast cancer and the potential synergistic effect of these two treatment modalities. As adjuvant therapy, two strategies are used in daily clinical practice: upfront aromatase inhibitors or sequentially after a variable delay of tamoxifen. These molecules may, thus, interact with radiotherapy. Retrospectives studies recently published did not show any differences in terms of locoregional recurrences between concurrent or sequential radiohormonotherapy. Lung and skin fibroses due to concurrent treatment are still under debate. Nevertheless, late side effects appeared to be increased by such a treatment, particularly in hypersensitive patients identified at risk by the lymphocyte predictive test. Concurrent radiohormonotherapy should, thus, be delivered cautiously at least for these patients. This article details the potent advantages and risks of concurrent use of adjuvant hormonotherapy and radiotherapy in localized breast cancers.
Resumo:
The cytoskeleton (CSK) is a nonequilibrium polymer network that uses hydrolyzable sources of free energy such as adenosine triphosphate (ATP) to remodel its internal structure. As in inert nonequilibrium soft materials, CSK remodeling has been associated with structural rearrangements driven by energy-activated processes. We carry out particle tracking and traction microscopy measurements of alveolar epithelial cells at various temperatures and ATP concentrations. We provide the first experimental evidence that the remodeling dynamics of the CSK is driven by structural rearrangements over free-energy barriers induced by thermally activated forces mediated by ATP. The measured activation energy of these forces is ~40kBTr (kB being the Boltzmann constant and Tr being the room temperature). Our experiments provide clues to understand the analogy between the dynamics of the living CSK and that of inert nonequilibrium soft materials.
Resumo:
Thermal analysis, powder diffraction, and Raman scattering as a function of the temperature were carried out on K2BeF4. Moreover, the crystal structure was determined at 293 K from powder diffraction. The compound shows a transition from Pna21 to Pnam space group at 921 K with a transition enthalpy of 5 kJ/mol. The transition is assumed to be first order because the compound shows metastability. Structurally and spectroscopically the transition is similar to those observed in (NH4)2SO4, which suggests that the low-temperature phase is ferroelectric. In order to confirm it, the spontaneous polarization has been computed using an ionic model.
Resumo:
BACKGROUND: We retrospectively reviewed the long-term outcome and late side effects of endometrial cancer (EC) patients treated with different techniques of postoperative radiotherapy (PORT). METHODS: Between 1999 and 2012, 237 patients with EC were treated with PORT. Two-dimensional external beam radiotherapy (2D-EBRT) was used in 69 patients (30 %), three-dimensional EBRT (3D-EBRT) in 51 (21 %), and intensity-modulated RT (IMRT) with helical Tomotherapy in 47 (20 %). All patients received a vaginal brachytherapy (VB) boost. Seventy patients (29 %) received VB alone. RESULTS: After a median of 68 months (range, 6-154) of follow-up, overall survival was 75 % [95 % confidence interval (CI), 69-81], disease-free survival was 72 % (95% CI, 66-78), cancer-specific survival was 85 % (95 % CI, 80-89), and locoregional control was 86 % (95 % CI, 81-91). The 5-year estimates of grade 3 or more toxicity and second cancer rates were 0 and 7 % (95 % CI, 1-13) for VB alone, 6 % (95 % CI, 1-11) and 0 % for IMRT + VB, 9 % (95 % CI, 1-17) and 5 % (95 % CI, 1-9) for 3D-EBRT + VB, and 22 % (95 % CI, 12-32) and 12 % (95 % CI, 4-20) for 2D-EBRT + VB (P = 0.002 and P = 0.01), respectively. CONCLUSIONS: Pelvic EBRT should be tailored to patients with high-risk EC because the severe late toxicity observed might outweigh the benefits. When EBRT is prescribed for EC, IMRT should be considered, because it was associated with a significant reduction of severe late side effects.
Resumo:
This paper presents a thermal modeling for power management of a new three-dimensional (3-D) thinned dies stacking process. Besides the high concentration of power dissipating sources, which is the direct consequence of the very interesting integration efficiency increase, this new ultra-compact packaging technology can suffer of the poor thermal conductivity (about 700 times smaller than silicon one) of the benzocyclobutene (BCB) used as both adhesive and planarization layers in each level of the stack. Thermal simulation was conducted using three-dimensional (3-D) FEM tool to analyze the specific behaviors in such stacked structure and to optimize the design rules. This study first describes the heat transfer limitation through the vertical path by examining particularly the case of the high dissipating sources under small area. First results of characterization in transient regime by means of dedicated test device mounted in single level structure are presented. For the design optimization, the thermal draining capabilities of a copper grid or full copper plate embedded in the intermediate layer of stacked structure are evaluated as a function of the technological parameters and the physical properties. It is shown an interest for the transverse heat extraction under the buffer devices dissipating most the power and generally localized in the peripheral zone, and for the temperature uniformization, by heat spreading mechanism, in the localized regions where the attachment of the thin die is altered. Finally, all conclusions of this analysis are used for the quantitative projections of the thermal performance of a first demonstrator based on a three-levels stacking structure for space application.
Resumo:
Whereas numerical modeling using finite-element methods (FEM) can provide transient temperature distribution in the component with enough accuracy, it is of the most importance the development of compact dynamic thermal models that can be used for electrothermal simulation. While in most cases single power sources are considered, here we focus on the simultaneous presence of multiple sources. The thermal model will be in the form of a thermal impedance matrix containing the thermal impedance transfer functions between two arbitrary ports. Eachindividual transfer function element ( ) is obtained from the analysis of the thermal temperature transient at node ¿ ¿ after a power step at node ¿ .¿ Different options for multiexponential transient analysis are detailed and compared. Among the options explored, small thermal models can be obtained by constrained nonlinear least squares (NLSQ) methods if the order is selected properly using validation signals. The methods are applied to the extraction of dynamic compact thermal models for a new ultrathin chip stack technology (UTCS).