993 resultados para submarine volcanism


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of 40Ar-39Ar Ar dating constrain the age of the submerged volcanic succession, part of the seaward-dipping reflector sequence of the Southeast Greenland volcanic rifted margin, recovered during Leg 163. At the 63ºN drilling transect, the fully normally magnetized volcanic units at Holes 989B (Unit 1) and 990A (Units 1 and 2) are dated at 57.1 ± 1.3 Ma and 55.6 ± 0.6 Ma, respectively. This correlates with a common magnetochron, C25n. The underlying, reversely magnetized lavas at Hole 990A (Units 3-13) yield an average age of 55.8 ± 0.7 Ma and may correlate with C25r. The argon data, however, are also consistent with eruption of the lavas at Site 990 during the very earliest portion of C24. If so, the normally polarized units have to be correlated to a cryptochron (e.g., C24r-11 at ~55.57 Ma). The lavas at Holes 989B and 990A have typical oceanic compositions, implying that final plate separation between Greenland and northwest Europe took place at ~56 Ma. The age for Hole 989B lava is younger than expected from the seismic interpretations, posing questions about the structural evolution of the margin. An age of 49.6 ± 0.2 Ma for the basaltic lava at Site 988 (~66ºN) points to the importance of postbreakup tholeiitic magmatism at the rifted margin. Together with results from Leg 152, a virtually complete time frame for ~12 m.y. of pre-, syn-, and postbreakup volcanism during rifted margin evolution in Southeast Greenland can now be assembled. This time frame includes continental type volcanism at ~61-60 Ma, synbreakup volcanism beginning at ~57 Ma, and postbreakup volcanism at ~49.6 Ma. These discrete time windows coincide with distinct periods of tholeiitic magmatism from the onshore East Greenland Tertiary Igneous Province and is consistent with discrete mantle-melting events triggered by plume arrival (~61-60 Ma) under central Greenland, continental breakup (~57-54 Ma), and passage of the plume axis beneath the East Greenland rifted margin after breakup (~50-49 Ma), respectively.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of conventional K-Ar dating on five samples from two sites from the Izu-Bonin forearc are presented. Two samples recovered from a volcanic edifice and overlying sediments drilled on the western side of the forearc basin (Site 792) indicate a basement age of 34 Ma. This is consistent with early Oligocene biostratigraphic ages from the overlying sediments. Three samples from the basement of Hole 793B at the center of the basin are not analytically distinguishable, with a best age of 27.1 +/- 0.6 Ma. This is slightly younger than the 30-33 Ma biostratigraphic and magnetostratigraphic estimates from the overlying sediments, suggesting that alteration processes have lowered the apparent K-Ar ages. These ages suggest that syn-rift volcanism occurred in a forearc location during the middle Oligocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of detailed geophysical, geological and gas- and hydrochemical research in the Caribbean-Mexican Basin and the Western Atlantic obtained during Cruise 4 of R/V Akademik Nikolaj Strakhov are published in the book. Distribution of the thermal field in different tectonic structures of the region is shown. Places of submarine hydrothermal vent discharge in tectonically active structures are described. They are confirmed by geothermal, geological and hydrochemical data. Based on lithofacies analysis of modern sediments installed their Specificity of different genetic types, facies and macrofacies of recent sediments in different geomorphological zones of the sea floor is shown. For description of hydrogeochemical situation of modern sedimentation and primary diagenesis the water column and interstitial sediment waters have been studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rate at which hydrothermal precipitates accumulate, as measured by the accumulation rate of manganese, can be used to identify periods of anomalous hydrothermal activity in the past. From a preliminary study of Sites 597 and 598, four periods prior to 6 Ma of anomalously high hydrothermal activity have been identified: 8.5 to 10.5 Ma, 12 to 16 Ma, 17 to 18 Ma, and 23-to-27 Ma. The 18-Ma anomaly is the largest and is associated with the jump in spreading from the fossil Mendoza Ridge to the East Pacific Rise, whereas the 23-to-27-Ma anomaly is correlated with the birth of the Galapagos Spreading Center and resultant ridge reorganization. The 12-to-16-Ma and 8.5-to-10.5-Ma anomalies are correlated with periods of anomalously high volcanism around the rim of the Pacific Basin and may be related to other periods of ridge reorganization along the East Pacific Rise. There is no apparent correlation between periods of fast spreading at 19°S and periods of high hydrothermal activity. We thus suggest that periods when hydrothermal activity and crustal alteration at mid-ocean ridges are the most pronounced may be periods of large-scale ridge reorganization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small glassy spheres, ellipsoids, teardrops, cylinders and dumbbells occur in large numbers in Tertiary deep sea clays cored in the northeastern Pacific by the Deep Sea Drilling Project. These objects morphologically resemble microtektites, but have the composition of an oceanic tholeiite. On the basis of their composition and stratigraphic relationship it is considered that they are of volcanic origin and most likely have been formed in deep water by submarine volcanic processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediments recovered during Ocean Drilling Program (ODP) Leg 123 from the Argo Abyssal Plain (AAP) consist largely of turbidites derived from the adjacent Australian continental margin. The oldest abundant turbidites are Valanginian-Aptian in age and have a mixed (smarl) composition; they contain subequal amounts of calcareous and siliceous biogenic components, as well as clay and lesser quartz. Most are thin-bedded, fine sand- to mud-sized, and best described by Stow and Piper's model (1984) for fine-grained biogenic turbidites. Thicker (to 3 m), coarser-grained (medium-to-coarse sand-sized) turbidites fit Bouma's model (1962) for sandy turbidites; these generally are base-cut-out (BCDE, BDE) sequences, with B-division parallel lamination as the dominant structure. Parallel laminae most commonly concentrate quartz and/or calcispheres vs. lithic clasts or clay, but distinctive millimeter- to centimeter-thick, radiolarian-rich laminae occur in both fine- and coarse-grained Valanginian-Hauterivian turbidites. AAP turbidites were derived from relatively deep parts of the continental margin (outer shelf, slope, or rise) that lay below the photic zone, but above the calcite compensation depth (CCD). Biogenic components are largely pelagic (calcispheres, foraminifers, radiolarians, nannofossils); lesser benthic foraminifers are characteristic of deep-water (abyssal to bathyal) environments. Abundant nonbiogenic components are mostly clay and clay clasts; smectite is the dominant clay species, and indicates a volcanogenic provenance, most likely the Triassic-Jurassic volcanic suite exposed along the northern Exmouth Plateau. Lower Cretaceous smarl turbidites were generated during eustatic lowstands and may have reached the abyssal plain via Swan Canyon, a submarine canyon thought to have formed during the Late Jurassic. In contrast to younger AAP turbidites, however, Lower Cretaceous turbidites are relatively fine-grained and do not contain notably older reworked fossils. Early in its history, the northwest Australian margin provided mainly contemporaneous slope sediment to the AAP; marginal basins adjacent to the continent trapped most terrigenous detritus, and pronounced canyon incisement did not occur until Late Cretaceous and, especially, Cenozoic time.