919 resultados para space-based lasers


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental analysis is applied for the first time to identify optimal launch conditions and carrier frequencies for SCM transmission over worst-case MMF. Potential for performance enhancement using electronic equalization is demonstrated for the first time. © 2006 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-power (more than 500 mW) and high-speed (more than 1 Gbps) tapered lasers at 1060 nm are required in free-space optical communications and (at lower frequencies of around 100 MHz) display applications for frequency doubling to the green. On a 3 mm long tapered laser, we have obtained an open eye diagram at 1 Gbps, together with a high extinction ratio of 11 dB, an optical modulation amplitude of 530 mW, and a high modulation efficiency of 13 W/A. On a 4 mm-long tapered laser, we have obtained an open eye diagram at 700 Mbps, together with a high extinction ratio of 19 dB, a high optical modulation amplitude of 1.6 W, and a very high modulation efficiency of 19 W/A. On a 6 mm-long tapered laser, we have obtained a very high power of 5W CW and a very high static modulation efficiency of 59.8 W/A. © 2011 SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RoFSO links are found to be susceptible to high-order laser distortion making conventional SFDR ineffective as a performance indicator. For the first time, peak input power is demonstrated as a service-independent bound on dynamic range. © 2011 OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we demonstrate photonic band-edge laser emission from emulsion-based polymer dispersed liquid crystals. The lasing medium consists of dye-doped chiral nematic droplets dispersed within a polymer matrix that spontaneously align as the film dries. Such lasers can be easily formed on single substrates with no alignment layers. The system combines the self-organizing periodic structure of chiral nematic liquid crystals with the simplicity of the emulsion procedure so as to produce a material that retains the emission characteristics of band-edge lasers yet can be readily coated. Sequential and stacked layers demonstrate the possibility of achieving simultaneous multi-wavelength laser output from glass, metallic, and flexible substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to understand how the performance of a liquid-crystal laser depends on the physical properties of the low molar mass nematic host, we have studied the energy threshold and slope efficiency of ten optically pumped liquid-crystal lasers based on different hosts. Specifically, this leads to a variation in the birefringence, the orientational order parameter, and the order parameter of the transition dipole moment of the dye. It is found that low threshold energies and high slope efficiencies correlate with high order parameters and large birefringences. To a first approximation this can be understood by considering analytical expressions for the threshold and slope efficiency, which are derived from the space-independent rate equations for a two-level system, in terms of the macroscopic liquid crystal properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel compact integrated nonlinear optical switch is demonstrated. Using a high-power picosecond pulse of 5-ps pulsewidth and 250-MHz repetition rate, all-optical switching with a contrast ratio of 23 dB has been achieved using an in-fiber input power < 14 dBm (100 pJ/pulse). The switch speed depends on the carrier sweep-out time, which can be reduced to the 10 ps range by either applying a reverse bias or by introduction of carrier recombination centers in the active layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advanced waveguide lasers, operating both in continuous wave and pulsed regimes, have been realized in an active phosphate glass by direct writing with femtosecond laser pulses. Stable single mode operation was obtained; the laser provided more than 50 m W in single longitudinal and transverse mode operation with 21% slope efficiency. Furthermore, by combining a high gain waveguide and an innovated fiber-pigtailed saturable absorber based on carbon nanotubes, a mode-locked ring laser providing transform limited 1.6 ps pulses was demonstrated. © 2007 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Chapter presents a vision-based system for touch-free interaction with a display at a distance. A single camera is fixed on top of the screen and is pointing towards the user. An attention mechanism allows the user to start the interaction and control a screen pointer by moving their hand in a fist pose directed at the camera. On-screen items can be chosen by a selection mechanism. Current sample applications include browsing video collections as well as viewing a gallery of 3D objects, which the user can rotate with their hand motion. We have included an up-to-date review of hand tracking methods, and comment on the merits and shortcomings of previous approaches. The proposed tracker uses multiple cues, appearance, color, and motion, for robustness. As the space of possible observation models is generally too large for exhaustive online search, we select models that are suitable for the particular tracking task at hand. During a training stage, various off-the-shelf trackers are evaluated. From this data differentmethods of fusing them online are investigated, including parallel and cascaded tracker evaluation. For the case of fist tracking, combining a small number of observers in a cascade results in an efficient algorithm that is used in our gesture interface. The system has been on public display at conferences where over a hundred users have engaged with it. © 2010 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used novel liquid crystals with extremely large flexoelectric coefficients in a range of ultra-fast photonic/display modes, namely 1) the uniform lying helix, that leads to in-plain switching, birefringence based displays with 100 μs switching times at low fields, i.e.2-5 V/μm, wide viewing angle and analogue or grey scale capability, 2) the uniform standing helix, using planar surface alignment and in-plane fields, with sub ms response times and optical contrasts in excess of 5000:1 with a perfect black "off state", 3) the wide temperature range blue phase that leads to field controlled reflective color and 4) high slope efficiency, wide wavelength range tunable narrow linewidth microscopic liquid crystal lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundamental frequency, or F0 is critical for high quality speech synthesis in HMM based speech synthesis. Traditionally, F0 values are considered to depend on a binary voicing decision such that they are continuous in voiced regions and undefined in unvoiced regions. Multi-space distribution HMM (MSDHMM) has been used for modelling the discontinuous F0. Recently, a continuous F0 modelling framework has been proposed and shown to be effective, where continuous F0 observations are assumed to always exist and voicing labels are explicitly modelled by an independent stream. In this paper, a refined continuous F0 modelling approach is proposed. Here, F0 values are assumed to be dependent on voicing labels and both are jointly modelled in a single stream. Due to the enforced dependency, the new method can effectively reduce the voicing classification error. Subjective listening tests also demonstrate that the new approach can yield significant improvements on the naturalness of the synthesised speech. A dynamic random unvoiced F0 generation method is also investigated. Experiments show that it has significant effect on the quality of synthesised speech. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past decades mode-locked fibre lasers have been extensively refined and developed, with most research efforts focussing on employing rare-earth doped fibres as the active elements [1]. This presents the problem that operation is limited to regions of the spectrum where such elements exhibit gain [1]. Raman amplification in silica fibre is an attractive way to overcome this spectral limitation, with gain available across the entire transparency window (300 nm - 2300 nm) [2-4]. There have been a number of reports utilising Raman gain in ultrashort pulse sources [2-4], however none using a broadband saturable absorber, such as carbon nanotubes [5-7] and graphene [7-9]. A broadband saturable absorber is an essential pre-requisite in order to fully exploit the wavelength flexibility provided by the Raman gain in short pulse mode-locked fiber lasers. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conventional technology for generating ultrashort pulses relies on soliton-like operation based mode-locking. In this regime, the pulse duration is limited by nonlinear optical effects[1]. One method to mitigate these effects is to alternate segments of normal and anomalous group velocity dispersion (GVD) fiber[1]. This configuration is known as dispersion-managed soliton design. It decreases the nonlinear optical effects and reduces the pulse duration[1]. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrafast passively mode-locked lasers with spectral tuning capability and high output power have widespread applications in biomedical research, spectroscopy and telecommunications [1,2]. Currently, the dominant technology is based on semiconductor saturable absorber mirrors (SESAMs) [2,3]. However, these typically have a narrow tuning range, and require complex fabrication and packaging [2,3]. A simple, cost-effective alternative is to use Single Wall Carbon Nanotubes (SWNTs) [4,10] and Graphene [10,14]. Wide-band operation is possible using SWNTs with a wide diameter distribution [5,10]. However, SWNTs not in resonance are not used and may contribute to unwanted insertion losses [10]. The linear dispersion of the Dirac electrons in graphene offers an ideal solution for wideband ultrafast pulse generation [10,15]. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate passive mode-locking of a Raman fiber laser using a nanotube-based saturable absorber. The normal dispersion cavity generates highly-chirped 500 ps pulses that are compressed down to 2 ps, with 1.4 kW peak power. © 2011 OSA.