969 resultados para solution studies
Resumo:
Aliman AC, Piccioni MA, Piccioni JL, Oliva JL, Auler Junior JOC - Intraosseous Anesthesia in Hemodynamic Studies in Children with Cardiopathy. Background and objectives: Intraosseous (IO) access has been used with good results in emergency situations, when venous access is not available for fluids and drugs infusion. The objective of this study was to evaluate IO a useful technique for anesthesia and fluids infusion during hemodynamic studies and when peripheral intravascular access is unobtainable. The setting was an university hospital hemodynamics unit, and the subjects were twenty one infants with congenital heart disease enrolled for elective hemodynamic study diagnosis. Methods: This study compared the effectiveness of IO access in relation to IV access for infusion of anesthetics agents (ketamine, midazolann, and fentanyl) and fluids during hemodynamic studies. The anesthetic induction time, procedure duration, anesthesia recovery time, adequate hydration, and IV and IO puncture complications were compared between groups. Results: The puncture time was significantly smaller in IO group (3.6 min) that in IV group (9.6 min). The anesthetic onset time (56.3 second) for the IV group was faster than IO group (71.3 second). No significant difference between groups were found in relation to hydration (IV group, 315.5 mL vs IO group, 293.2 mL), and anesthesia recovery time (IO group, 65.2 min vs IV group, 55.0 min). The puncture site was reevaluated after 7 and 15 days without signs of infection or other complications. Conclusions: Results showed superiority for IO infusion when considering the puncture time of the procedure. Due to its easy manipulation and efficiency, hydration and anesthesia by IO access was satisfactory for hemodynamic studies without the necessity of other infusion access.
Determination of the solution structures of conantokin-G and conantokin-T by CD and NMR spectroscopy
Resumo:
Conantokin-G and conantokin-T are two paralytic polypeptide toxins originally isolated from the venom of the fish-hunting cone snails of the genus Conus. Conantokin-G and conantokin-T are the only naturally occurring peptidic compounds which possess N-methyl-D-aspartate receptor antagonist activity, produced by a selective non-competitive antagonism of polyamine responses, They are also structurally unusual in that they contain a disproportionately large number of acid labile post-translational gamma-carboxyglutamic acid (Gla) residues, Although no precise structural information has previously been published for these peptides, early spectroscopic measurements have indicated that both conantokin-G and conantokin-T form alpha-helical structures, although there is some debate whether the presence of calcium ions is required for these peptides to adopt this fold, We now report a detailed structural study of synthetic conantokin-G and conantokin-T in a range of solution conditions using CD and H-1 NMR spec troscopy. The three-dimensional structures of conantokin-T and conantokin-G were calculated from H-1 NMR-derived distance and dihedral restraints. Both conantokins were found to contain a mixture of alpha- and 3(10) helix, that give rise to curved and straight helical conformers. Conantokin-G requires the presence of divalent cations (Zn2+, Ca2+, Cu2+, Or Mg2+) to form a stable iv-helix, while conantokin-T adopts a stable alpha-helical structure in aqueous conditions, in the presence or absence of divalent cations (Zn2+, Ca2+, Cu2+, Or Mg2+).
Resumo:
In studies assessing the trends in coronary events, such as the World Health Organization (WHO) MONICA Project (multinational MONItoring of trends and determinants of CArdiovascular disease), the main emphasis has been on coronary deaths and non-fatal definite myocardial infarctions (MI). It is, however, possible that the proportion of milder MIs may be increasing because of improvements in treatment and reductions in levels of risk factors. We used the MI register data of the WHO MONICA Project to investigate several definitions for mild non-fatal MIs that would be applicable in various settings and could be used to assess trends in milder coronary events. Of 38 populations participating in the WHO MONICA MI register study, more than half registered a sufficiently wide spectrum of events that it was possible to identify subsets of milder cases. The event rates and case fatality rates of MI are clearly dependent on the spectrum of non-fatal MIs, which are included. On clinical grounds we propose that the original MONICA category ''non-fatal possible MI'' could bt:divided into two groups: ''non fatal probable MI'' and ''prolonged chest pain.'' Non-fatal probable MIs are cases, which in addition to ''typical symptoms'' have electrocardiogram (EGG) or enzyme changes suggesting cardiac ischemia, but not severe enough to fulfil the criteria for non-fatal definite MI In more than half of the MONICA Collaborating Centers, the registration of MI covers these milder events reasonably well. Proportions of non-fatal probable MIs vary less between populations than do proportions of non fatal possible MIs. Also rates of non-fatal probable MI are somewhat more highly correlated with rates of fatal events and non-fatal definite MI. These findings support the validity of the category of non-fatal probable MI. In each center the increase in event rates and the decrease in case-fatality due to the inclusion of non-fatal probable MI was lar er for women than men. For the WHO MONICA Project and other epidemiological studies the proposed category of non-fatal probable MIs can be used for assessing trends in rates of milder MI. Copyright (C) 1997 Elsevier Science Inc.
Resumo:
Background: Calcium is one of the triggers involved in ischemic neuronal death. Because hypotension is a strong predictor of outcome in traumatic brain injury (TBI), we tested the hypothesis that early fluid resuscitation blunts calcium influx in hemorrhagic shock associated to TBI. Methods: Fifteen ketamine-halothane anesthetized mongrel dogs (18.7 kg +/- 1.4 kg) underwent unilateral cryogenic brain injury. Blood was shed in 5 minutes to a target mean arterial pressure of 40 mm Hg to 45 mm Hg and maintained at these levels for 20 minutes (shed blood volume = 26 mL/kg +/- 7 mL/kg). Animals were then randomized into three groups: CT (controls, no fluid resuscitation), HS (7.5% NaCl, 4 mL/kg, in 5 minutes), and LR (lactate Ringer`s, 33 mL/kg, in 15 minutes). Twenty minutes later, a craniotomy was performed and cerebral biopsies were obtained next to the lesion (""clinical penumbra"") and from the corresponding contralateral side (""lesion`s mirror"") to determine intracellular calcium by fluorescence signals of Fura-2-loaded cells. Results: Controls remained hypotensive and in a low-flow state, whereas fluid resuscitation improved hemodynamic profile. There was a significant increase in intracellular calcium in the injured hemisphere in CT (1035 nM +/- 782 nM), compared with both HS (457 nM +/- 149 nM, p = 0.028) and LR (392 nM +/- 178 nM, p = 0.017), with no differences between HS and LR (p = 0.38). Intracellular calcium at the contralateral, uninjured hemisphere was 438 nM +/- 192 nM in CT, 510 nM +/- 196 nM in HS, and 311 nM +/- 51 nM in LR, with no significant differences between them. Conclusion: Both small volume hypertonic saline and large volume lactated Ringer`s blunts calcium influx in early stages of TBI associated to hemorrhagic shock. No fluid resuscitation strategy promotes calcium influx and further neural damage.
Resumo:
IRI is closely related to sepsis in ITx setting. Complete understanding of the mechanisms involved in IRI development may improve outcomes. Ortothopic ITx without immunosuppression was performed in order to characterize IRI-associated mucosal damage. Twenty pigs underwent ITx. Two groups were assigned to different CI times: G1: 90 min and, G2: 180 min. Euro-Collins was used as preservation solution. Jejunal fragments were collected at donor laparotomy, 30 min, and 3 days after reperfusion. IRI assessment involved: histopathologic analysis, quantification of MPO-positive cells through immunohistochemical studies, quantification of epithelial apoptotic cells using TUNEL staining, and quantification of IL-6, ET-1, Bak, and Bcl-XL genes expression by RT-PCR. Neutrophilic infiltration increased in a similar fashion in both groups, but lasted longer in G2. Apoptosis detected by TUNEL staining increased and anti-apoptotic gene Bcl-XL expression decreased significantly in G1, 3 days after surgery. Endothelin-1 and IL-6 genes expression increased 30 min after the procedure and returned to baseline 3 days after surgery. In conclusion, IL-6 and ET-1 are involved precociously in the development of intestinal IRI. Apoptosis was more frequently detected in G1 grafts by TUNEL-staining and by RT-PCR.
Resumo:
Objectives: Acute pancreatitis (AP) protease release induces lung parenchymal destruction via matrix metalloproteinases (MMPs), a neutrophil (polymorphonuclear leukocyte)-dependent process. Recent studies in hemorrhagic shock revealed that hypertonic saline (HTS) has an anti-inflammatory effect and can inhibit a variety of neutrophil functions. The aim of this study was to determine whether HTS and its actions in the pathway of neutrophil migration, MMPs, and heat shock proteins (HSPs) are effective in protecting the lung from injury associated with AP. Methods: We determined neutrophil infiltration and expressions of MMPs and HSPs in the lung tissue after AP induced by retrograde infusion of 2.5% of sodium taurocholate. Results: Animals submitted to AP that received HTS compared with those who received normal saline presented with increased HSP70 and HSP90 expressions and reduced myeloperoxidase levels and MMP-9 expression and activity. Conclusions: Our data raised the hypothesis that a sequence of HTS lung protection events increases HSP70 and HSP90, inhibiting infiltration of neutrophils and their protease actions in the lung.
Resumo:
Background: Dobutamine is the agent of choice for increasing cardiac output during myocardial depression in humans with septic shock. Studies have shown that beta-adrenoceptor agonists influence nitric oxide generation, probably by modulating cyclic adenosine monophosphate. We investigated the effects of dobutamine on the systemic and luminal gut release of nitric oxide during endotoxic shock in rabbits. Materials/Methods: Twenty anesthetized and ventilated New Zealand rabbits received placebo or intravenous lipopolysaccharide with or without dobutamine (5 mu g/kg/min). Ultrasonic flow probes placed around the superior mesenteric artery and the abdominal aorta continously estimated the flow. A segment from the ileum was isolated and perfused, and scrum nitrate/nitrite levels were measured in the perfusate solution and the serum every hour. Results: The mean arterial pressure decreased with statistical significance in the lipopolysaccharide group but not in the lipopolysaccharide/dobutamine group. The abdominal aortic flow decreased statistically significantly after lipopolysaccharide administration in both groups but recovered to base-line in the lipopolysaccharide/dobutamine group. The flow in the superior mesenteric artery was statistically significantly higher in the lipopolysaccharide/dobutamine group than in the lipopolysaccharide group at 2 hours. The serum nitrate/nitrite levels were higher in the lipopolysaccharide group and lower in the lipopolysaccharide/dobutamine group than those in the control group. The gut luminal perfusate serum nitrate/nitric level was higher in the lipopolysaccharide group than in the lipopolysaccharide/dobutamine group. Conclusions: Dobutamine can decrease total and intestinal nitric oxide production in vivo. Those effects seem to be inversely proportional to the changes in blood flow.
Resumo:
The gene encoding the large conductance mechanosensitive ion channel (MscL) of Escherichia coli and several deletion mutants of mscL were cloned under the control of the T7 RNA polymerase promoter. Transformation of these constructs into an E. coli strain carrying an inducible T7 RNA polymerase gene allowed the specific production and labelling of MscL with [S-35]methionine. Preparation of membrane fractions of E. coli cells by sucrose gradient centrifugation indicated that the radiolabelled MscL was present in the inner cytoplasmic membrane in agreement with results of several studies. However, treatment of the labelled cells and cell membrane vesicles with various cross-linkers resulted in the majority of labelled protein migrating as a monomer with a small proportion of molecules (approximate to 25%) migrating as dimers and higher order multimers. This result is in contrast with a finding of a study suggesting that the channel exclusively forms hexamers in the cell membrane off. coli (1) and therefore may have profound implication for the activation and/or ''multimerization'' of the channel by mechanical stress exerted to the membrane. In addition, from the specific activity of the radiolabelled protein and the amount of protein in the cytoplasmic membrane fraction we estimated the number of MscL ion channels expressed under these conditions to be approximately 50 channels per single bacterium. (C) 1997 Academic Press.
Resumo:
Mutations in PKD2 are responsible for approximately 15% of the autosomal dominant polycystic kidney disease cases. This gene encodes polycystin-2, a calcium-permeable cation channel whose C-terminal intracytosolic tail (PC2t) plays an important role in its interaction with a number of different proteins. In the present study, we have comprehensively evaluated the macromolecular assembly of PC2t homooligomer using a series of biophysical and biochemical analyses. Our studies, based on a new delimitation of PC2t, have revealed that it is capable of assembling as a homotetramer independently of any other portion of the molecule. Our data support this tetrameric arrangement in the presence and absence of calcium. Molecular dynamics simulations performed with a modified all-atoms structure-based model supported the PC2t tetrameric assembly, as well as how different populations are disposed in solution. The simulations demonstrated, indeed, that the best-scored structures are the ones compatible with a fourfold oligomeric state. These findings clarify the structural properties of PC2t domain and strongly support a homotetramer assembly of PC2.
Resumo:
Introduction: Smoking is a serious worldwide public health problem. Animal models act as a bridge between laboratory and human studies. The models applied are difficult to reproduce because of the use of different types of inhalation chambers and mainly because of the lack of continuous monitoring of smoke concentration. Objective: To develop an inhalation chamber for rats (with only the nose exposed) in which the amount of carbon monoxide (CO) can be maintained and monitored constantly. Material and methods: Male Wistar rats weighing 250 g were exposed to 50 ppm CO produced by the smoke from a filter-free cigarette. The animals were submitted to a single 2-h exposure and then sacrificed at 0, 4, 24 and 48 h. The control group was left restrained inside the small perpendicular chambers, receiving only 5 L/min of compressed air. Results: The model was able to increase HbCO levels immediately after the end of exposure (p < 0.001). with a decrease being observed from 2 h onwards when compared to the levels of the control group. Plasma cotinine increased immediately after exposure, and showed still detectable levels at 2 and 4 h (p < 0.05). Conclusion: We conclude that the presented inhalation chamber system is able to maintain a controlled CO concentration in a model in which small animals are exposed to the inhalation of cigarette smoke, permitting well-controlled studies, as well as investigations involving other toxic gases and air pollutants. (C) 2008 SEPAR. Published by Elsevier Espana, S.L. All rights reserved.
Resumo:
Background: The venoms of Conus snails contain small, disulfide-rich inhibitors of voltage-dependent sodium channels. Conotoxin GS is a 34-residue polypeptide isolated from Conus geographus that interacts with the extracellular entrance of skeletal muscle sodium channels to prevent sodium ion conduction. Although conotoxin GS binds competitively with mu conotoxin GIIIA to the sodium channel surface, the two toxin types have little sequence identity with one another, and conotoxin GS has a four-loop structural framework rather than the characteristic three-loop mu-conotoxin framework. The structural study of conotoxin GS will form the basis for establishing a structure-activity relationship and understanding its interaction with the pore region of sodium channels. Results: The three-dimensional structure of conotoxin GS was determined using two-dimensional NMR spectroscopy. The protein exhibits a compact fold incorporating a beta hairpin and several turns. An unusual feature of conotoxin GS is the exceptionally high proportion (100%) of cis-imide bond geometry for the three proline or hydroxyproline residues. The structure of conotoxin GS bears little resemblance to the three-loop mu conotoxins, consistent with the low sequence identity between the two toxin types and their different structural framework. However, the tertiary structure and cystine-knot motif formed by the three disulfide bonds is similar to that present in several other polypeptide ion channel inhibitors. Conclusions: This is the first three-dimensional structure of a 'four-loop' sodium channel inhibitor, and it represents a valuable new structural probe for the pore region of voltage-dependent sodium channels. The distribution of amino acid sidechains in the structure creates several polar and charged patches, and comparison with the mu conotoxins provides a basis for determining the binding surface of the conotoxin GS polypeptide.
Resumo:
Condensation of (-)-norephedrine with excess formaldehyde under mild conditions leads to formation of the 2:1 condensation product N,N'-methylenebis(4-methyl-5-phenyl)oxazolidine compared with the reaction with 1 mol of formaldehyde, which leads to 4-methyl-5-phenyloxazolidine. H-1 and C-13 NMR spectroscopy was used to monitor the stability of this compound and its decomposition products. The 2:1 condensation product is found to be stable in CDC1(3) but breaks down rapidly in CD3OD to yield a 50:50 mixture of 4-methyl-5-phenyloxazolidine and 3-hydroxymethyl-4-methyl-5-phenyloxazolidine. Upon addition of D2O to this equimolar mixture, the latter compound decomposes to norephedrine and formaldehyde, whereas the former compound is stable. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
7-ketocholesterol (7-KC) differs from cholesterol by a functional ketone group at C7. It is an oxygenated cholesterol derivative (oxysterol), commonly present in oxidized low-density lipoprotein (LDL). Oxysterols are generated and participate in several physiologic and pathophysiologic processes. For instance, the cytotoxic effects of oxidized LDL have been widely attributed to bioactive compounds like oxysterols. The toxicity is in part due to 7-KC. Here we aimed to demonstrate the possibility of incorporating 7-KC into the synthetic nanoemulsion LDE, which resembles LDL in composition and behavior. This would provide a suitable artificial particle resembling LDL to study 7-KC metabolism. We were able to incorporate 7-KC in several amounts into LDE. The incorporation was evaluated and confirmed by several methods, including gel filtration chromatography, using radiolabeled lipids. The incorporation did not change the main lipid composition characteristics of the new nanoparticle. Particle sizes were also evaluated and did not differ from LDE. In vivo studies were performed by injecting the nanoemulsion into mice. The plasma kinetics and the targeted organs were the same as described for LDE. Therefore, 7-KC-LDE maintains composition, size and some functional characteristics of LDE and could be used in experiments dealing with 7-ketocholesterol metabolism in lipoproteins.