980 resultados para solar PV


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new strategy for enhancing the efficiency and reducing the production cost of TiO 2 solar cells by design of a new formulated TiO 2 paste with tailored crystal structure and morphology is reported. The conventional three- or four-fold layer deposition process was eliminated and replaced by a single layer deposition of TiO 2 compound. Different TiO 2 pastes with various crystal structures, morphologies and crystallite sizes were prepared by an aqueous particulate sol-gel process. Based on simultaneous differential thermal (SDT) analysis the minimum annealing temperature to obtain organic-free TiO 2 paste was determined at 400°C, being one of the lowest crystallization temperatures of TiO 2 photoanode electrodes for solar cell application. Photovoltaic measurements showed that TiO 2 solar cell with pure anatase crystal structure had higher power conversion efficiency (PCE) than that made of pure rutile-TiO 2. However, the PCE of solar cells depends on the anatase to rutile weight ratio, reaching a maximum at a specific value due to the synergic effect between anatase and rutile TiO 2 nanoparticles. Moreover, it was found that the PCE of solar cells made of crystalline TiO 2 powders was much higher, increasing in the range 32-84% depending on anatase to rutile weight ratio, than that of prepared by amorphous powders. TiO 2 solar cell with the morphology of mixtures of nanoparticles and microparticles had higher PCE than the solar cell with the same phase composition containing TiO 2 nanoparticles due to the role of TiO 2 microparticles as light scattering particles. The presented strategy would open up new insight into fabrication and structural design of low-cost TiO 2 solar cells with high power conversion efficiency. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter we report a facile one-pot synthesis of intercalated ZnO particles for inexpensive, low-temperature solution processed dye-sensitised solar cells. High interconnectivity facilitates enhanced charge transfer between the ZnO nanoparticles and a consequent enhancement in cell efficiency. ZnO thin films were formed from a wide range of nanoparticle diameters which simultaneously increased optical scattering whilst enhancing dye loading. A possible growth mechanism was proposed for the synthesis of ZnO nanoparticles. The intercalated ZnO nanoparticle thin films were integrated into the photoanodes of dye-sensitised solar cells which showed an increase in performance of 37% compared to structurally equivalent cells employing ZnO nanowires. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterojunction is an important structure for the development of photovoltaic solar cells. In contrast to homojunction structures, heterojunction solar cells have internal crystalline interfaces, which will reflect part of the incident light, and this has not been considered carefully before though many heterostructure solar cells have been commercialized. This paper discusses the internal reflection for various material systems used for the development of heterostructure-based solar cells. It has been found that the most common heterostructure solar cells have internal reflection less than 2%, while some potential heterojunction solar cells such as ITO/GaAs, ITO/InP, Si/Ge, polymer/semiconductors and oxide semiconductors may have internal reflection as high as 20%. Also it is worse to have a window layer with a lower refractive index than the absorption layer for solar cells. Ignoring this strong internal reflection will lead to severe deterioration and reduction of conversion efficiency; therefore measures have to be taken to minimize or prevent this internal reflection. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electronic load interface (ELI) for improving the operational margin of a photovoltaic (PV) dual-converter system under dynamic conditions is presented. The ELI - based on a modified buck-boost converter - interfaces the output of the converters and the load system. It improves the operational margin of the PV dual-converter system by extending the conditions under which the dual-converter system operates at the maximum power point. The ELI is activated as and when needed, so as minimise system losses. By employing the ELI, utilisation and efficiency of a PV dual-converter system increases. In general, the concept of the ELI can be applied to multi-converter PV systems - such as multi-converter inverters, and multi-converter DC-DC converter systems - for performance and efficiency improvement. © 2013 The Institution of Engineering and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two solar cells based on an InGaN/GaN p-i-n hetero-junction, but having different dislocation densities, were fabricated and characterized. The structures were grown on c-plane (0001) GaN-on-sapphire templates with different threading dislocation (TD) densities of 5×108 and 5×109 cm-2. Structural characterization revealed the presence of V-defects in the InGaN epilayer. Since each V-defect was associated with a TD, the structural as well as the optical properties worsened with a higher TD density in the GaN/sapphire template. It was also found that additional dislocations were generated in the p-GaN layer over the V-defects in the InGaN layer. Because of its superior structural quality, the peak external quantum efficiency (EQE) of the low TD density sample was three times higher than that of the high TD density sample. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have prepared single crystalline SnO2 and ZnO nanowires and polycrystalline TiO2 nanotubes (1D networks) as well as nanoparticle-based films (3D networks) from the same materials to be used as photoanodes for solid-state dye-sensitized solar cells. In general, superior photovoltaic performance can be achieved from devices based on 3-dimensional networks, mostly due to their higher short circuit currents. To further characterize the fabricated devices, the electronic properties of the different networks were measured via the transient photocurrent and photovoltage decay techniques. Nanowire-based devices exhibit extremely high, light independent electron transport rates while recombination dynamics remain unchanged. This indicates, contrary to expectations, a decoupling of transport and recombination dynamics. For typical nanoparticle-based photoanodes, the devices are usually considered electron-limited due to the poor electron transport through nanocrystalline titania networks. In the case of the nanowire-based devices, the system becomes limited by the organic hole transporter used. In the case of polycrystalline TiO2 nanotube-based devices, we observe lower transport rates and higher recombination dynamics than their nanoparticle-based counterparts, suggesting that in order to improve the electron transport properties of solid-state dye-sensitized solar cells, single crystalline structures should be used. These findings should aid future design of photoanodes based on nanowires or porous semiconductors with extended crystallinity to be used in dye-sensitized solar cells. © 2013 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The power-conversion efficiency of solid-state dye-sensitized solar cells can be optimized by reducing the energy offset between the highest occupied molecular orbital (HOMO) levels of dye and hole-transporting material (HTM) to minimize the loss-in-potential. Here, we report a study of three novel HTMs with HOMO levels slightly above and below the one of the commonly used HTM 2,2′,7,7′- tetrakis(N,N-di-p-methoxyphenylamino)-9,9′- spirobifluorene (spiro-OMeTAD) to systematically explore this possibility. Using transient absorption spectroscopy and employing the ruthenium based dye Z907 as sensitizer, it is shown that, despite one new HTM showing a 100% hole-transfer yield, all devices based on the new HTMs performed worse than those incorporating spiro-OMeTAD. We further demonstrate that the design of the HTM has an additional impact on the electronic density of states present at the TiO2 electrode surface and hence influences not only hole- but also electron-transfer from the sensitizer. These results provide insight into the complex influence of the HTM on charge transfer and provide guidance for the molecular design of new materials. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pico-PV is an excellent technology for bringing electric light to rural areas in the developing world and replacing kerosene lanterns and candles. However, as pico-PV is a comparatively new technology, relatively little is known about appropriate methods for sustainable product development and deployment. For this reason current dissemination methods are often ineffective and unsustainable. This research aims to help project developers deploy pico-PV technologies successfully and in a sustainable manner. To achieve this, a conceptual framework of key sustainability criteria along the value chain was developed and tested. The analysis revealed that the most important criteria for the sustainable deployment of pico-PV systems are: (a) easy and safe operation of the product; (b) that a system for product return is established; (c) the retailer understands the target market and (d) the end-user is aware of the product's existence and its benefits. This research reveals that criteria (b) and (c) are of greatest concern. In light of these findings, the authors propose to focus on the following five factors; namely: (a) raising awareness for certification and creating market reassurance; (b) introducing support mechanisms to facilitate local repair; (c) using existing supply channels and establishing in-country (dis)assembly; (d) introducing financial support mechanisms at product supply stages and; (e) undertaking marketing campaigns. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies on diurnal photosynthesis of macroalgal species have shown that at similar levels of photosynthetically active radiation (PAR, 400-700nm) the photosynthetic rate is lower in the afternoon than in the morning. However, the impacts of solar ultraviolet radiation (UVR, 280-400nm) have been little considered. We investigated the diurnal photosynthetic behaviour of the economically significant red alga Gracilaria lemaneiformis in the absence or presence of UV-A+B or UV-B with a flow-through system. While UV-A and UV-B, respectively, inhibited noontime Pmax by 22% and 14% on the sunny days, UV-A during sunrise (PAR below about 50Wm-2) increased the net photosynthesis by about 8% when compared with PAR alone. UV-A + PAR also resulted in higher apparent photosynthetic efficiency in the morning than in the afternoon period than PAR alone. Nevertheless, integrated daytime photosynthetic production under solar PAR alone was higher than with either PAR + UV-A+B or PAR + UV-A. Relative growth rate in the long term (9 days) matched the integrated photosynthetic production in that UV-A led to 9-15% and UV-B to 19-22% reduction, respectively. UV-absorbing compounds were found to be higher in the thalli exposed to PAR+UV-A+B than under PAR alone, reflecting a protective response to UVR.