820 resultados para sistema distribuito data-grid cloud computing CERN LHC Hazelcast Elasticsearch
Resumo:
Grid computing is an advanced technique for collaboratively solving complicated scientific problems using geographically and organisational dispersed computational, data storage and other recourses. Application of grid computing could provide significant benefits to all aspects of power system that involves using computers. Based on our previous research, this paper presents a novel grid computing approach for probabilistic small signal stability (PSSS) analysis in electric power systems with uncertainties. A prototype computing grid is successfully implemented in our research lab to carry out PSSS analysis on two benchmark systems. Comparing to traditional computing techniques, the gird computing has given better performances for PSSS analysis in terms of computing capacity, speed, accuracy and stability. In addition, a computing grid framework for power system analysis has been proposed based on the recent study.
Resumo:
The software architecture and development consideration for open metadata extraction and processing framework are outlined. Special attention is paid to the aspects of reliability and fault tolerance. Grid infrastructure is shown as useful backend for general-purpose task.
Resumo:
In this paper we evaluate and compare two representativeand popular distributed processing engines for large scalebig data analytics, Spark and graph based engine GraphLab. Wedesign a benchmark suite including representative algorithmsand datasets to compare the performances of the computingengines, from performance aspects of running time, memory andCPU usage, network and I/O overhead. The benchmark suite istested on both local computer cluster and virtual machines oncloud. By varying the number of computers and memory weexamine the scalability of the computing engines with increasingcomputing resources (such as CPU and memory). We also runcross-evaluation of generic and graph based analytic algorithmsover graph processing and generic platforms to identify thepotential performance degradation if only one processing engineis available. It is observed that both computing engines showgood scalability with increase of computing resources. WhileGraphLab largely outperforms Spark for graph algorithms, ithas close running time performance as Spark for non-graphalgorithms. Additionally the running time with Spark for graphalgorithms over cloud virtual machines is observed to increaseby almost 100% compared to over local computer clusters.
Resumo:
Through numerous technological advances in recent years along with the popularization of computer devices, the company is moving towards a paradigm “always connected”. Computer networks are everywhere and the advent of IPv6 paves the way for the explosion of the Internet of Things. This concept enables the sharing of data between computing machines and objects of day-to-day. One of the areas placed under Internet of Things are the Vehicular Networks. However, the information generated individually for a vehicle has no large amount and does not contribute to an improvement in transit, once information has been isolated. This proposal presents the Infostructure, a system that has to facilitate the efforts and reduce costs for development of applications context-aware to high-level semantic for the scenario of Internet of Things, which allows you to manage, store and combine the data in order to generate broader context. To this end we present a reference architecture, which aims to show the major components of the Infostructure. Soon after a prototype is presented which is used to validate our work reaches the level of contextualization desired high level semantic as well as a performance evaluation, which aims to evaluate the behavior of the subsystem responsible for managing contextual information on a large amount of data. After statistical analysis is performed with the results obtained in the evaluation. Finally, the conclusions of the work and some problems such as no assurance as to the integrity of the sensory data coming Infostructure, and future work that takes into account the implementation of other modules so that we can conduct tests in real environments are presented.
Resumo:
Al Large Hadron Collider (LHC) ogni anno di acquisizione dati vengono raccolti più di 30 petabyte di dati dalle collisioni. Per processare questi dati è necessario produrre un grande volume di eventi simulati attraverso tecniche Monte Carlo. Inoltre l'analisi fisica richiede accesso giornaliero a formati di dati derivati per centinaia di utenti. La Worldwide LHC Computing GRID (WLCG) è una collaborazione interazionale di scienziati e centri di calcolo che ha affrontato le sfide tecnologiche di LHC, rendendone possibile il programma scientifico. Con il prosieguo dell'acquisizione dati e la recente approvazione di progetti ambiziosi come l'High-Luminosity LHC, si raggiungerà presto il limite delle attuali capacità di calcolo. Una delle chiavi per superare queste sfide nel prossimo decennio, anche alla luce delle ristrettezze economiche dalle varie funding agency nazionali, consiste nell'ottimizzare efficientemente l'uso delle risorse di calcolo a disposizione. Il lavoro mira a sviluppare e valutare strumenti per migliorare la comprensione di come vengono monitorati i dati sia di produzione che di analisi in CMS. Per questa ragione il lavoro è comprensivo di due parti. La prima, per quanto riguarda l'analisi distribuita, consiste nello sviluppo di uno strumento che consenta di analizzare velocemente i log file derivanti dalle sottomissioni di job terminati per consentire all'utente, alla sottomissione successiva, di sfruttare meglio le risorse di calcolo. La seconda parte, che riguarda il monitoring di jobs sia di produzione che di analisi, sfrutta tecnologie nel campo dei Big Data per un servizio di monitoring più efficiente e flessibile. Un aspetto degno di nota di tali miglioramenti è la possibilità di evitare un'elevato livello di aggregazione dei dati già in uno stadio iniziale, nonché di raccogliere dati di monitoring con una granularità elevata che tuttavia consenta riprocessamento successivo e aggregazione “on-demand”.
Resumo:
Provenance plays a pivotal in tracing the origin of something and determining how and why something had occurred. With the emergence of the cloud and the benefits it encompasses, there has been a rapid proliferation of services being adopted by commercial and government sectors. However, trust and security concerns for such services are on an unprecedented scale. Currently, these services expose very little internal working to their customers; this can cause accountability and compliance issues especially in the event of a fault or error, customers and providers are left to point finger at each other. Provenance-based traceability provides a mean to address part of this problem by being able to capture and query events occurred in the past to understand how and why it took place. However, due to the complexity of the cloud infrastructure, the current provenance models lack the expressibility required to describe the inner-working of a cloud service. For a complete solution, a provenance-aware policy language is also required for operators and users to define policies for compliance purpose. The current policy standards do not cater for such requirement. To address these issues, in this paper we propose a provenance (traceability) model cProv, and a provenance-aware policy language (cProvl) to capture traceability data, and express policies for validating against the model. For implementation, we have extended the XACML3.0 architecture to support provenance, and provided a translator that converts cProvl policy and request into XACML type.
Resumo:
Current trends in broadband mobile networks are addressed towards the placement of different capabilities at the edge of the mobile network in a centralised way. On one hand, the split of the eNB between baseband processing units and remote radio headers makes it possible to process some of the protocols in centralised premises, likely with virtualised resources. On the other hand, mobile edge computing makes use of processing and storage capabilities close to the air interface in order to deploy optimised services with minimum delay. The confluence of both trends is a hot topic in the definition of future 5G networks. The full centralisation of both technologies in cloud data centres imposes stringent requirements to the fronthaul connections in terms of throughput and latency. Therefore, all those cells with limited network access would not be able to offer these types of services. This paper proposes a solution for these cases, based on the placement of processing and storage capabilities close to the remote units, which is especially well suited for the deployment of clusters of small cells. The proposed cloud-enabled small cells include a highly efficient microserver with a limited set of virtualised resources offered to the cluster of small cells. As a result, a light data centre is created and commonly used for deploying centralised eNB and mobile edge computing functionalities. The paper covers the proposed architecture, with special focus on the integration of both aspects, and possible scenarios of application.
Resumo:
LHC experiments produce an enormous amount of data, estimated of the order of a few PetaBytes per year. Data management takes place using the Worldwide LHC Computing Grid (WLCG) grid infrastructure, both for storage and processing operations. However, in recent years, many more resources are available on High Performance Computing (HPC) farms, which generally have many computing nodes with a high number of processors. Large collaborations are working to use these resources in the most efficient way, compatibly with the constraints imposed by computing models (data distributed on the Grid, authentication, software dependencies, etc.). The aim of this thesis project is to develop a software framework that allows users to process a typical data analysis workflow of the ATLAS experiment on HPC systems. The developed analysis framework shall be deployed on the computing resources of the Open Physics Hub project and on the CINECA Marconi100 cluster, in view of the switch-on of the Leonardo supercomputer, foreseen in 2023.
Resumo:
L'esperimento ATLAS, come gli altri esperimenti che operano al Large Hadron Collider, produce Petabytes di dati ogni anno, che devono poi essere archiviati ed elaborati. Inoltre gli esperimenti si sono proposti di rendere accessibili questi dati in tutto il mondo. In risposta a questi bisogni è stato progettato il Worldwide LHC Computing Grid che combina la potenza di calcolo e le capacità di archiviazione di più di 170 siti sparsi in tutto il mondo. Nella maggior parte dei siti del WLCG sono state sviluppate tecnologie per la gestione dello storage, che si occupano anche della gestione delle richieste da parte degli utenti e del trasferimento dei dati. Questi sistemi registrano le proprie attività in logfiles, ricchi di informazioni utili agli operatori per individuare un problema in caso di malfunzionamento del sistema. In previsione di un maggiore flusso di dati nei prossimi anni si sta lavorando per rendere questi siti ancora più affidabili e uno dei possibili modi per farlo è lo sviluppo di un sistema in grado di analizzare i file di log autonomamente e individuare le anomalie che preannunciano un malfunzionamento. Per arrivare a realizzare questo sistema si deve prima individuare il metodo più adatto per l'analisi dei file di log. In questa tesi viene studiato un approccio al problema che utilizza l'intelligenza artificiale per analizzare i logfiles, più nello specifico viene studiato l'approccio che utilizza dell'algoritmo di clustering K-means.
Resumo:
Il lavoro presentato in questa tesi analizza il comportamento elettrico di prototipi di sensori Low-Gain Avalanche Detector (LGAD) ultrasottili. L'analisi consiste in una verifica sperimentale delle caratteristiche attese di questi sensori, che sono stati selezionati come possibili candidati per la realizzazione del sistema di Time-Of-Flight (TOF) nell'esperimento ALICE 3. Concepito come evoluzione dell'esperimento ALICE attualmente in funzione al CERN, ALICE 3 rappresenta l'archetipo di una nuova generazione di esperimenti nella fisica delle collisioni di ioni pesanti, ed è previsto iniziare la propria attività di presa dati per LHC Run 5 nel 2032. Sono stati presi in considerazione 22 campioni di LGAD, di cui 11 provenienti dal wafer di produzione 5 (spessore 25 um) e gli altri 11 dal wafer 6 (spessore 35 um). In entrambi i casi, di questi 11 sensori, 6 sono campioni in configurazione LGAD-PIN e 5 sono matrici. Tutti e 22 i campioni sono stati sottoposti a misure di corrente in funzione del voltaggio, mentre solo quelli appartenenti al wafer 5 anche a misure di capacità. L'obiettivo è quello di misurare la caratteristica IV e CV per ognuno dei campioni e da queste estrarre, rispettivamente, tensione di breakdown e profilo di doping.
Resumo:
A necessidade de poder computacional é crescente nas diversas áreas de actuação humana, tanto na indústria, como em ambientes académicos. Grid Computing permite a ligação de recursos computacionais dispersos de maneira a permitir a sua utilização mais eficaz, fornecendo aos utilizadores um acesso simplificado ao poder computacional de diversos sistemas. Os primeiros projectos de Grid Computing implicavam a ligação de máquinas paralelas ou aglomerados de alto desempenho e alto custo, disponíveis apenas em algumas instituições. Contrastando com o elevado custo dos super-computadores, os computadores pessoais e a Internet sofreram uma evolução significativa nos últimos anos. O uso de computadores dispersos em uma WAN pode representar um ambiente muito interessante para processamento de alto desempenho. Os sistemas em Grid fornecem a possibilidade de se utilizar um conjunto de computadores pessoais de modo a fornecer uma computação que utiliza recursos que de outra maneira estariam omissos. Este trabalho consiste no estudo de Grid Computing a nível de conceito e de arquitectura e numa análise ao seu estado actual hoje em dia. Como complemento foi desenvolvido um componente que permite o desenvolvimento de serviços para Grids (Grid Services) mais eficaz do que o modelo de suporte a serviços actualmente utilizado. Este componente é disponibilizado sob a forma um plug-in para a plataforma Eclipse IDE.
Resumo:
O presente projecto tem como objectivo a disponibilização de uma plataforma de serviços para gestão e contabilização de tempo remunerável, através da marcação de horas de trabalho, férias e faltas (com ou sem justificação). Pretende-se a disponibilização de relatórios com base nesta informação e a possibilidade de análise automática dos dados, como por exemplo excesso de faltas e férias sobrepostas de trabalhadores. A ênfase do projecto está na disponibilização de uma arquitectura que facilite a inclusão destas funcionalidades. O projecto está implementado sobre a plataforma Google App Engine (i.e. GAE), de forma a disponibilizar uma solução sob o paradigma de Software as a Service, com garantia de disponibilidade e replicação de dados. A plataforma foi escolhida a partir da análise das principais plataformas cloud existentes: Google App Engine, Windows Azure e Amazon Web Services. Foram analisadas as características de cada plataforma, nomeadamente os modelos de programação, os modelos de dados disponibilizados, os serviços existentes e respectivos custos. A escolha da plataforma foi realizada com base nas suas características à data de iniciação do presente projecto. A solução está estruturada em camadas, com as seguintes componentes: interface da plataforma, lógica de negócio e lógica de acesso a dados. A interface disponibilizada está concebida com observação dos princípios arquitecturais REST, suportando dados nos formatos JSON e XML. A esta arquitectura base foi acrescentada uma componente de autorização, suportada em Spring-Security, sendo a autenticação delegada para os serviços Google Acounts. De forma a permitir o desacoplamento entre as várias camadas foi utilizado o padrão Dependency Injection. A utilização deste padrão reduz a dependência das tecnologias utilizadas nas diversas camadas. Foi implementado um protótipo, para a demonstração do trabalho realizado, que permite interagir com as funcionalidades do serviço implementadas, via pedidos AJAX. Neste protótipo tirou-se partido de várias bibliotecas javascript e padrões que simplificaram a sua realização, tal como o model-view-viewmodel através de data binding. Para dar suporte ao desenvolvimento do projecto foi adoptada uma abordagem de desenvolvimento ágil, baseada em Scrum, de forma a implementar os requisitos do sistema, expressos em user stories. De forma a garantir a qualidade da implementação do serviço foram realizados testes unitários, sendo também feita previamente a análise da funcionalidade e posteriormente produzida a documentação recorrendo a diagramas UML.
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial