962 resultados para single electron transfer (SET)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this work was to establish a modified pre-diagnostic polymerase chain reaction (PCR) protocol using a single primer set that enables successful amplification of a highly conserved mammalian sequence in order to determine overall sample DNA quality for multiple mammalian species that inhabit areas endemic for leishmaniasis. The gene encoding interphotoreceptor retinoid-binding protein (IRBP), but not other conserved genes, was efficiently amplified in DNA samples from tail skin, ear skin, bone marrow, liver and spleen from all of the species tested. In tissue samples that were PCR-positive for Leishmania, we found that DNA from 100%, 55% and 22% of the samples tested resulted in a positive PCR reaction for the IRBP, beta-actin and beta-globin genes, respectively. Nucleotide sequencing of an IRBP amplicon resolved any questions regarding the taxonomical classification of a rodent, which was previously based simply on the morphological features of the animal. Therefore, PCR amplification and analysis of the IRBP amplicon are suitable for pre-diagnostically assessing DNA quality and identifying mammalian species living in areas endemic to leishmaniasis and other diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A comparision of the local effects of the basis set superposition error (BSSE) on the electron densities and energy components of three representative H-bonded complexes was carried out. The electron densities were obtained with Hartee-Fock and density functional theory versions of the chemical Hamiltonian approach (CHA) methodology. It was shown that the effects of the BSSE were common for all complexes studied. The electron density difference maps and the chemical energy component analysis (CECA) analysis confirmed that the local effects of the BSSE were different when diffuse functions were present in the calculations

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of basis set superposition error (BSSE) on molecular complexes is analyzed. The BSSE causes artificial delocalizations which modify the first order electron density. The mechanism of this effect is assessed for the hydrogen fluoride dimer with several basis sets. The BSSE-corrected first-order electron density is obtained using the chemical Hamiltonian approach versions of the Roothaan and Kohn-Sham equations. The corrected densities are compared to uncorrected densities based on the charge density critical points. Contour difference maps between BSSE-corrected and uncorrected densities on the molecular plane are also plotted to gain insight into the effects of BSSE correction on the electron density

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quantum molecular similarity (QMS) techniques are used to assess the response of the electron density of various small molecules to application of a static, uniform electric field. Likewise, QMS is used to analyze the changes in electron density generated by the process of floating a basis set. The results obtained show an interrelation between the floating process, the optimum geometry, and the presence of an external field. Cases involving the Le Chatelier principle are discussed, and an insight on the changes of bond critical point properties, self-similarity values and density differences is performed

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To obtain a state-of-the-art benchmark potential energy surface (PES) for the archetypal oxidative addition of the methane C-H bond to the palladium atom, we have explored this PES using a hierarchical series of ab initio methods (Hartree-Fock, second-order Møller-Plesset perturbation theory, fourth-order Møller-Plesset perturbation theory with single, double and quadruple excitations, coupled cluster theory with single and double excitations (CCSD), and with triple excitations treated perturbatively [CCSD(T)]) and hybrid density functional theory using the B3LYP functional, in combination with a hierarchical series of ten Gaussian-type basis sets, up to g polarization. Relativistic effects are taken into account either through a relativistic effective core potential for palladium or through a full four-component all-electron approach. Counterpoise corrected relative energies of stationary points are converged to within 0.1-0.2 kcal/mol as a function of the basis-set size. Our best estimate of kinetic and thermodynamic parameters is -8.1 (-8.3) kcal/mol for the formation of the reactant complex, 5.8 (3.1) kcal/mol for the activation energy relative to the separate reactants, and 0.8 (-1.2) kcal/mol for the reaction energy (zero-point vibrational energy-corrected values in parentheses). This agrees well with available experimental data. Our work highlights the importance of sufficient higher angular momentum polarization functions, f and g, for correctly describing metal-d-electron correlation and, thus, for obtaining reliable relative energies. We show that standard basis sets, such as LANL2DZ+ 1f for palladium, are not sufficiently polarized for this purpose and lead to erroneous CCSD(T) results. B3LYP is associated with smaller basis set superposition errors and shows faster convergence with basis-set size but yields relative energies (in particular, a reaction barrier) that are ca. 3.5 kcal/mol higher than the corresponding CCSD(T) values

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The level of ab initio theory which is necessary to compute reliable values for the static and dynamic (hyper)polarizabilities of three medium size π-conjugated organic nonlinear optical (NLO) molecules is investigated. With the employment of field-induced coordinates in combination with a finite field procedure, the calculations were made possible. It is stated that to obtain reasonable values for the various individual contributions to the (hyper)polarizability, it is necessary to include electron correlation. Based on the results, the convergence of the usual perturbation treatment for vibrational anharmonicity was examined

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We include solvation effects in tight-binding Hamiltonians for hole states in DNA. The corresponding linear-response parameters are derived from accurate estimates of solvation energy calculated for several hole charge distributions in DNA stacks. Two models are considered: (A) the correction to a diagonal Hamiltonian matrix element depends only on the charge localized on the corresponding site and (B) in addition to this term, the reaction field due to adjacent base pairs is accounted for. We show that both schemes give very similar results. The effects of the polar medium on the hole distribution in DNA are studied. We conclude that the effects of polar surroundings essentially suppress charge delocalization in DNA, and hole states in (GC)n sequences are localized on individual guanines

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The eccentric contraction mode was proposed to be the primary stimulus for optimum angle (angle at which peak torque occurs) shift. However, the training range of motion (or muscle excursion range) could be a stimulus as important. The aim of this study was to assess the influence of the training range of motion stimulus on the hamstring optimum length. It was hypothesised that performing a single set of concentric contractions beyond optimal length (seated at 80° of hip flexion) would lead to an immediate shift of the optimum angle to longer muscle length while performing it below (supine at 0° of hip flexion) would not provide any shift. Eleven male participants were assessed on an isokinetic dynamometer. In both positions, the test consisted of 30 consecutive knee flexions at 4.19 rad · s⁻¹. The optimum angle was significantly shifted by ∼15° in the direction of longer muscle length after the contractions at 80° of hip flexion, while a non-significant shift of 3° was found at 0°. The hamstring fatigability was not influenced by the hip position. It was concluded that the training range of motion seems to be a relevant stimulus for shifting the optimum angle to longer muscle length. Moreover, fatigue appears as a mechanism partly responsible for the observed shift.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article, we explore the possibility of modifying the silicon nanocrystal areal density in SiOx single layers, while keeping constant their size. For this purpose, a set of SiOx monolayers with controlled thickness between two thick SiO2 layers has been fabricated, for four different compositions (x=1, 1.25, 1.5, or 1.75). The structural properties of the SiO x single layers have been analyzed by transmission electron microscopy (TEM) in planar view geometry. Energy-filtered TEM images revealed an almost constant Si-cluster size and a slight increase in the cluster areal density as the silicon content increases in the layers, while high resolution TEM images show that the size of the Si crystalline precipitates largely decreases as the SiO x stoichiometry approaches that of SiO2. The crystalline fraction was evaluated by combining the results from both techniques, finding a crystallinity reduction from 75% to 40%, for x = 1 and 1.75, respectively. Complementary photoluminescence measurements corroborate the precipitation of Si-nanocrystals with excellent emission properties for layers with the largest amount of excess silicon. The integrated emission from the nanoaggregates perfectly scales with their crystalline state, with no detectable emission for crystalline fractions below 40%. The combination of the structural and luminescence observations suggests that small Si precipitates are submitted to a higher compressive local stress applied by the SiO2 matrix that could inhibit the phase separation and, in turn, promotes the creation of nonradiative paths.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

L'élément génétique intégratif et conjugatif auto-transférable de 103 kb qui se trouve dans le génome de Pseudomonas knackmussii B13 (ICEc/c) confère la capacité de dégrader le 3-chlorobenzoate et le 2-aminophénol. L'élément ICE c/c peut être transféré par conjugaison de la souche B13 à diverses bêta- et gamma- protéobactéries. Seule une sous-population de 3 à 5% des cellules transfère l'élément, les cellules dites "compétentes pour le transfert". L'acquisition de la compétence pour le transfert est vraisemblablement la conséquence d'une régulation bistable, conduisant une partie des cellules au transfert de l'élément ICE c/c tandis que, dans les autres, l'élément reste quiescent et ne se transfère pas. À ce jour, les mécanismes et les acteurs moléculaires qui régulent l'activation bistable de l'élément sont restés inconnus. Mon travail de doctorat visait à identifier les éléments bistables du régulon de la compétence pour le transfert et d'analyser les fondements moléculaires de la bistabilité de l'élément ICE c/c chez P. knackmussii. Le premier chapitre introduit le thème du transfert génétique horizontal avec un accent particulier sur les éléments intégratifs et conjugatifs (ICE) et ICEcIc. L'état actuel des connaissances sur l'organisation génétique, la régulation, l'intégration et le transfert de différents modèles de ICEs est exposé en détail. En outre, je m'étends sur les phénomènes d'hétérogénéité et de bistabilité phénotyplques, qu'on peut distinguer dans une population isogénique dans des conditions de culture homogènes, et qui sont susceptibles de jouer un rôle dans le transfert de l'élément ICE c/c, dans la mesure où il ne s'active et n'est transférable que dans une très petite sous-population de cellules. Dans le chapitre 2, je présente une analyse globale des régions promotrices minimales des gènes appartenant au régulon de la compétence pour le transfert de l'élément ICE c/c. Nous avons étudié les caractéristiques d'expression des promoteurs et, s'ils s'avéraient bistables, leur activation dans le temps par comparaison avec le mutant lntB13. Pour ce faire, nous avons utilisé des fusions de promoteurs avec des gènes rapporteurs et testé l'expression bistable chez P. knackmussii par microscopie à épifluorescence. Pour six promoteurs présentant une expression bistable, nous avons employé de la microscopie temporelle pour déterminer la chronologie de leur expression par rapport à Pint et PinR. Parmi eux, nous avons identifié deux gènes exprimés précocement et trois gènes exprimés tardivement dans le processus d'acquisition de la compétence de transfert. Dans le chapitre 3, j'expose une analyse d'expression génétique pour l'un des groupes de gènes dont la transcription est la plus élevée dans la région conservée de ICE c/c, les gènes orf81655-orf68241 contenus dans une région de 14 kb. Nous montrons d'abord que cet opéron fait partie du même régulon bistable que intB13 et inrR et analysons les caractéristiques génétiques qui conduisent à une transcription élevée. Nous étudions les fonctions biologiques de ce groupe de gènes par des délétlons ciblées et montrons que certaines d'entre elles empêchent le transfert de l'élément. Nous approfondissons la caractérlsatlon de I'orf8l655 en construisant une fusion transcrlptionnelle avec le gène codant pour la protéine fluorescente verte (egfp) (en utilisant le système minl-Tn5). L'expression de Vorf81655 dans des cellules individuelles est comparée au signal mesuré par hybridation in situ en fluorescence (FISH) sur le ARN messager du gène. En utilisant FISH, des délétlons du promoteur et de l'analyse directe de transcription, nous avons localisé la région promotrice du groupe de gènes. En outre, nous avons utilisé des mutations dirigées pour comprendre la bistabilité de cette région promotrice, caractérisée par une transcription très élevée et une traduction lente de l'ARN messager.  Dans le chapitre 4, nous nous efforçons de comprendre comment la bistabilité est générée au sein du régulon te de l'élément ICE c/c. Pour ce faire, nous avons tenté de reconstituer une expression bistable, dans un hôte qui ne présente pas de bistabilité naturellement, à partir d'éléments génétiques individuels. L'hôte choisi est Pseudomonas putida dans lequel nous avons introduit une copie unique de Pint, PinR ou PaipA fusionnés à la egfp, construits qui permettent d'observer l'apparition de bistabilité. Nous avons ensuite construit différents assemblages de composants génétiques de l'élément ICE c/c, en nous concentrant sur la région parA-inrR. En effet, nous avons pu démontrer qu'une expression bistable apparaît dans P. putida grâce à ces éléments en l'absence de l'élément ICE c/c complet. À noter que la plupart des construits génétiques activent PaipA ou P|,,R, mais qu'un seul recrée la bistabilité de Pint, ce qui suggère que la région parA-inrR permet à la fois d'engendrer la bistabilité et d'opérer la transition entre les promoteurs précoces et les promoteurs tardifs du régulon de la bistabilité. Dans le chapitre 5, nous concluons sur une discussion de la pertinence de nos résultats et sur de futures perspectives de recherche. -- The 103-kb self-transmissible integrative and conjugative element (ICE) of Pseudomonas knackmussii B13 (ICEc/c) confers the capacity to degrade 3- chlorobenzoate and 2-aminophenol. ICEc/c can be conjugated from strain B13 to a variety of Beta- and Gammaproteobacteria. Interestingly, ICE c/c transfer is observed in a subpopulatlon of cells (3-5%) only, the so-called 'transfer competent' cells. The formation of transfer competence (tc) is thought to be the consequence of a 'bistable' decision, which forces those cells to follow the developmental path which leads to ICEc/c transfer, whereas in others ICE c/c remains silent and does not transfer. So far, the mechanisms and molecular partners generating this bistable transfer activation in cells of P. knackmussii B13 remain mostly unidentified. This thesis aimed at understanding the extent of the tc bistability regulon and to dissect the molecular basis of bistabillty formation of ICEc/c in P. knackmussii. The first chapter is a general Introduction on horizontal gene transfer (HGT) with particular emphasis on ICEs and ICE c/c. The emphasis is made on the current knowledge about the HGT gene organization, regulation and specific integration and transfer aspects of the different ICEs models. Furthermore, I focus on the phenomena of phenotypic heterogeneity and bistability (the property of two distinguishable phenotypes existing within an isogenic population under homogeneous conditions), which may play a particular role in ICEc/c behaviour, since ICE activation and transfer only occurs in a very small subpopulation of cells. In Chapter Two, I focus on a global analysis of the different core promoters that might belong to the ICEc/c tc pathway regulon. We studied both expression patterns of ICEc/c promoters and, once being identified as "bistable", their temporal activation compared to that of intB13. In order to do this, we used promoter reporter fusions and tested blstability expression in P. knackmussii using epifluorescence microscopy. For the 6 promoters that showed bistable expression, we used time-lapse microscopy to study the timing of promoter expression in comparison to that of P,,,t or PlnR. We could establish two "early" and 3 "late" phase promoters in the process of transfer competence. In Chapter Three, I focused my attention on analysis of gene expression of one of the most highly transcribed gene clusters in the conserved core region of ICEc/c, a 14-kb gene cluster formed by the genes orf81655-orf68241. First we showed that this operon is part of the same bistability 'regulon' as intB13 and inrR, and analysed the genetic features that lead to high transcription. We studied the potential biological function of this cluster for ICE c/c by making specific gene deletions, showing that some interrupt ICEc/c transfer. We further analysed the orfdl655 promoter by constructing transcriptional egfp fusion reporter strains using the miniTn5 delivery system. Expression of the orf81655 promoter in single cells was compared to signals measured by Fluorescence In Situ Hybridization (FISH) on orfSl655 mRNA. We localized the promoter region of the gene cluster using FISH, promoter deletions, and by direct transcript analysis. We further used site-directed mutagenesis to understand the bistability character of the promoter region and the extremely high transcription but low translation from this mRNA. In Chapter Four, we set out to understand how bistability is generated in the tc pathway of ICEc/c. For this we tried rebuilding bistable expression from ICEc/c individual gene components in a host, which normally does not display bistability. As host we used P. putida without ICEc/c but with a single copy Pint-, PlnR- or PalpA- egfp fusion that enabled us to verify bistability formation. Subsequently, we built different assemblages of ICEc/c gene components, focusing on the parA-inrR region. Indeed, we found that bistable expression can be build from those components in P. putida without ICEc/c. Interestingly, most genetic constructs activated PaipA or PlnR, but only one resulted in bistable activation of PinT. This suggests that the parA-inrR region acts as a bistability "generator", but also as a bistability "relay" from early to late promoters in the tc pathway hierarchy. In the final fifth chapter, we conclude with a discussion of the relevance of the present thesis and the resulting perspectives for future studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electron scattering on unstable nuclei is planned in future facilities of the GSI and RIKEN upgrades. Motivated by this fact, we study theoretical predictions for elastic electron scattering in the N=82, N=50, and N=14 isotonic chains from very proton-deficient to very proton-rich isotones. We compute the scattering observables by performing Dirac partial-wave calculations. The charge density of the nucleus is obtained with a covariant nuclear mean-field model that accounts for the low-energy electromagnetic structure of the nucleon. For the discussion of the dependence of scattering observables at low-momentum transfer on the gross properties of the charge density, we fit Helm model distributions to the self-consistent mean-field densities. We find that the changes shown by the electric charge form factor along each isotonic chain are strongly correlated with the underlying proton shell structure of the isotones. We conclude that elastic electron scattering experiments on isotones can provide valuable information about the filling order and occupation of the single-particle levels of protons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As reactive extraction grown more and more popular in a variety of technological applications, optimizing its performance becomes more and more important. The process of complex formation is affected by a great number of both physical and chemical properties of all the components involved, and sometimes their interference with one another makes improving the effectiveness of such processes very difficult. In this Master’s Theses, the processes of complex formation between the aqueous phase - represented by copper sulfate water solution, and organic phase – represented by Acorga M5640 solvent extractor, were studied in order to establish the effect these components have on reactive extraction performance and to determine which step is bottlenecking the process the most.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Organic crystals possess extremely large optical nonlinearity compared to inorganic crystals. Also organic compounds have the amenability for synthesis and scope for introducing desirable characteristics by inclusions. A wide variety of organic materials having electron donor and acceptor groups, generate high order of nonlinearity. In the present work, a new nonlinear optical crystal, L-citrulline oxalate (LCO) based on the aminoacid L-citrulline was grown using slow evaporation technique. Structural characterization was carried out by single crystal XRD. It crystallizes in the noncentrosymmetric, orthorhombic structure with space group P21 P21 P21. Functional groups present in the sample were identified by Fourier transform infra red (FTIR) and FT-Raman spectral analysis. On studying the FTIR and Raman spectra of the precursors L-citrulline and oxalic acid, used for growing L-citrulline oxalate crystal, it is found that the significant peaks of the precursors are present in the spectra of the L-citrulline oxalate crystal . This observation along with the presence of NH3 + group in the spectra of L-citrulline oxalate, confirms the formation of the charge transfer complex