853 resultados para sheep milk
Resumo:
Foam properties depend on the physico-chemical characteristics of the continuous phase, the method of production and process conditions employed; however the preparation of barista-style milk foams in coffee shops by injection of steam uses milk as its main ingredient which limits the control of foam properties by changing the biochemical characteristics of the continuous phase. Therefore, the control of process conditions and nozzle design are the only ways available to produce foams with diverse properties. Milk foams were produced employing different steam pressures (100-280 kPa gauge) and nozzle designs (ejector, plunging-jet and confined-jet nozzles). The foamability of milk, and the stability, bubble size and texture of the foams were investigated. Variations in steam pressure and nozzle design changed the hydrodynamic conditions during foam production, resulting in foams having a range of properties. Steam pressure influenced foam characteristics, although the net effect depended on the nozzle design used. These results suggest that, in addition to the physicochemical determinants of milk, the foam properties can also be controlled by changing the steam pressure and nozzle design.
Resumo:
Partial budgeting was used to estimate the net benefit of blending Jersey milk in Holstein-Friesian milk for Cheddar cheese production. Jersey milk increases Cheddar cheese yield. However, the cost of Jersey milk is also higher; thus, determining the balance of profitability is necessary, including consideration of seasonal effects. Input variables were based on a pilot plant experiment run from 2012 to 2013 and industry milk and cheese prices during this period. When Jersey milk was used at an increasing rate with Holstein-Friesian milk (25, 50, 75, and 100% Jersey milk), it resulted in an increase of average net profit of 3.41, 6.44, 8.57, and 11.18 pence per kilogram of milk, respectively, and this additional profit was constant throughout the year. Sensitivity analysis showed that the most influential input on additional profit was cheese yield, whereas cheese price and milk price had a small effect. The minimum increase in yield, which was necessary for the use of Jersey milk to be profitable, was 2.63, 7.28, 9.95, and 12.37% at 25, 50, 75, and 100% Jersey milk, respectively. Including Jersey milk did not affect the quantity of whey butter and powder produced. Althoug further research is needed to ascertain the amount of additional profit that would be found on a commercial scale, the results indicate that using Jersey milk for Cheddar cheese making would lead to an improvement in profit for the cheese makers, especially at higher inclusion rates.
Resumo:
Cardiovascular diseases (CVD) are the leading cause of mortality and morbidity worldwide. One of the key dietary recommendations for CVD prevention is reduction of saturated fat intake. Yet despite milk and dairy foods contributing on average 27 % of saturated fat intake in the UK diet, evidence from prospective cohort studies does not support a detrimental effect of milk and dairy foods on risk of CVD. This paper provides a brief overview of the role of milk and dairy products in the diets of UK adults, and will summarise the evidence in relation to the effects of milk and dairy consumption on CVD risk factors and mortality. The majority of prospective studies and meta-analyses examining the relationship between milk and dairy product consumption and risk of CVD show that milk and dairy products, excluding butter, are not associated with detrimental effects on CVD mortality or risk biomarkers, that include serum LDL cholesterol. In addition, there is increasing evidence that milk and dairy products are associated with lower blood pressure and arterial stiffness. These apparent benefits of milk and dairy foods have been attributed to their unique nutritional composition, and suggest that the elimination of milk and dairy may not be the optimum strategy for CVD risk reduction.
Resumo:
Demand for organic milk is partially driven by consumer perceptions that it is more nutritious. However, there is still considerable uncertainty over whether the use of organic production standards affects milk quality. Here we report results of meta-analyses based on 170 published studies comparing the nutrient content of organic and conventional bovine milk. There were no significant differences in total SFA and MUFA concentrations between organic and conventional milk. However, concentrations of total PUFA and n-3 PUFA were significantly higher in organic milk, by an estimated 7 (95 % CI −1, 15) % and 56 (95 % CI 38, 74) %, respectively. Concentrations of α-linolenic acid (ALA), very long-chain n-3 fatty acids (EPA+DPA+DHA) and conjugated linoleic acid were also significantly higher in organic milk, by an 69 (95 % CI 53, 84) %, 57 (95 % CI 27, 87) % and 41 (95 % CI 14, 68) %, respectively. As there were no significant differences in total n-6 PUFA and linoleic acid (LA) concentrations, the n-6:n-3 and LA:ALA ratios were lower in organic milk, by an estimated 71 (95 % CI −122, −20) % and 93 (95 % CI −116, −70) %. It is concluded that organic bovine milk has a more desirable fatty acid composition than conventional milk. Meta-analyses also showed that organic milk has significantly higher α-tocopherol and Fe, but lower I and Se concentrations. Redundancy analysis of data from a large cross-European milk quality survey indicates that the higher grazing/conserved forage intakes in organic systems were the main reason for milk composition differences.
Resumo:
Although milk consumption is recommended in most dietary guidelines around the world, its contribution to overall diet quality remains a matter of debate in the scientific community as well as in the public. This paper summarizes the discussion among experts in the field on the place of milk in a balanced, healthy diet. The evidence to date suggests at least a neutral effect of milk intake on health outcomes. The possibility that milk intake is simply a marker of higher nutritional quality diets cannot be ruled out. This review also identifies a number of key research gaps pertaining to the impact of milk consumption on health. These need to be addressed to better inform future dietary guidelines.
Resumo:
Public health policies recommend a population wide decrease in the consumption of saturated fatty acids (SFA) to lower the incidence of cardiovascular and metabolic diseases. In most developed countries, milk and dairy products are the major source of SFA in the human diet. Altering milk fat composition offers the opportunity to lower the consumption of SFA without requiring a change in eating habits. Supplementing the diet of lactating cows with oilseeds, plant oils and marine lipids can be used to replace the SFA in milk fat with monounsaturated fatty acids (MUFA), and to a lesser extent, polyunsaturated fatty acids (PUFA). Due to ruminal metabolism, the decreases in milk SFA are also accompanied by increases in trans fatty acids (TFA), including conjugated isomers. The potential to lower SFA, enrich cis MUFA and PUFA, and alter the abundance and distribution of individual TFA in milk differs according to oil source, form of lipid supplement and degree of oilseed processing, and the influence of other components in the diet. The present review summarises recent evidence on changes in milk fat composition that can be achieved using dietary lipid supplements and highlights the challenges to commercial production of modified milk and dairy products. A meta-analysis on the effects of oilseeds on milk fatty acid composition is also presented.
Resumo:
Proteins from dromedary camel milk (CM) produced in Europe were separated and quantified by capillary electrophoresis (CE). CE analysis showed that camel milk lacks b-lactoglobulin and consists of high concentration of a-lactalbumin (2.01 ± 0.02 mg mL-1), lactoferrin (1.74 ± 0.06 mg mL-1) and serum albumin (0.46 ± 0.01 mg mL-1 ). Among caseins, the concentration of b-casein (12.78 ± 0.92 mg mL-1) was found the highest followed by a-casein (2.89 ± 0.29 mg mL-1) while k-casein represented only minor amount (1.67 ± 0.01 mg mL-1). These results were in agreement with sodium dodecyl sulphatepolyacrylamide gel electrophoresis patterns. Overall, CE offers a quick and reliable method for the determination of major CM proteins, which may be responsible for the many nutritional and health properties of CM.
Resumo:
The aim of this study was to assess and improve the accuracy of biotransfer models for the organic pollutants (PCBs, PCDD/Fs, PBDEs, PFCAs, and pesticides) into cow’s milk and beef used in human exposure assessment. Metabolic rate in cattle is known as a key parameter for this biotransfer, however few experimental data and no simulation methods are currently available. In this research, metabolic rate was estimated using existing QSAR biodegradation models of microorganisms (BioWIN) and fish (EPI-HL and IFS-HL). This simulated metabolic rate was then incorporated into the mechanistic cattle biotransfer models (RAIDAR, ACC-HUMAN, OMEGA, and CKow). The goodness of fit tests showed that RAIDAR, ACC-HUMAN, OMEGA model performances were significantly improved using either of the QSARs when comparing the new model outputs to observed data. The CKow model is the only one that separates the processes in the gut and liver. This model showed the lowest residual error of all the models tested when the BioWIN model was used to represent the ruminant metabolic process in the gut and the two fish QSARs were used to represent the metabolic process in the liver. Our testing included EUSES and CalTOX which are KOW-regression models that are widely used in regulatory assessment. New regressions based on the simulated rate of the two metabolic processes are also proposed as an alternative to KOW-regression models for a screening risk assessment. The modified CKow model is more physiologically realistic, but has equivalent usability to existing KOW-regression models for estimating cattle biotransfer of organic pollutants.
Resumo:
The prevalence of cardiometabolic diseases is a significant public health burden worldwide. Emerging evidence supports the inverse association between greater dairy consumption and reduced risk of cardiometabolic diseases. Dairy proteins may have in important role in the favourable impact of dairy on human health such as blood pressure (BP) control, blood lipid and glucose control. The purpose of this review is to update and critically evaluate the evidence on the impacts of casein and whey protein in relation to metabolic function. Evidence from acute clinical studies assessing postprandial responses to milk protein ingestion suggests benefits on vascular function independent of BP, as well as improvement in glycaemic homeostasis. Chronic interventions have been less conclusive, with some showing benefits and others indicating a lack of improvement in vascular function. During chronic consumption BP appears to be lowered and both dyslipidaemia and hyperglacaemia seems to be controlled. Limited number of trials investigated the effects of dairy proteins on oxidative stress and inflammation. The beneficial changes in cardiometabolic homeostasis are likely mediated through improvements in insulin resistance, however to gain more detailed understanding on the underlying mechanism of milk proteins warrants further research. The incorporation of meals enriched with dairy protein in the habitual diet may result in the beneficial effects on cardiometabolic health. Nevertheless, future well-designed, controlled studies are needed to investigate the relative effects of both casein and whey protein on BP, vascular function, glucose homeostasis and inflammation.
Resumo:
Introduction: New reconstructive and less invasive methods have been searched to optimize bone formation and osseointegration of dental implants in maxillary sinus augmentation. Purpose: The aim of the presented ovine split-mouth study was to compare bovine bone mineral (BBM) alone and in combination with mesenchymal stem cells (MSCs) regarding their potential in sinus augmentation. Material and Methods: Bilateral sinus floor augmentations were performed in six adult sheep. BBM and MSCs were placed into the test side and only BBM in the contra-lateral control side of each sheep. Animals were sacrificed after 8 and 16 weeks. Augmentation sites were analyzed by computed tomography, histology, and histomorphometry. Results: The initial volumes of both sides were similar and did not change significantly with time. A tight connection between the particles of BBM and the new bone was observed histologically. Bone formation was significantly (p = 0.027) faster by 49% in the test sides. Conclusion: The combination of BBM and MSCs accelerated new bone formation in this model of maxillary sinus augmentation. This could allow early placement of implants.
Resumo:
Our aim was to compare the osteogenic potential of mononuclear cells harvested from the iliac crest combined with bovine bone mineral (BBM) (experimental group) with that of autogenous cancellous bone alone (control group). We studied bilateral augmentations of the sinus floor in 6 adult sheep. BBM and mononuclear cells (MNC) were mixed and placed into one side and autogenous bone in the other side. Animals were killed after 8 and 16 weeks. Sites of augmentation were analysed radiographically and histologically. The mean (SD) augmentation volume was 3.0 (1.0) cm(3) and 2.7 (0.3) cm(3) after 8 and 16 weeks in the test group, and 2.8 (0.3) cm(3) (8 weeks) and 2.8 (1.2) cm(3) (16 weeks) in the control group, respectively. After 8 weeks, histomorphometric analysis showed 24 (3)% BBM, and 19 (11)% of newly formed bone in the test group. The control group had 20 (13%) of newly formed bone. Specimens after 16 weeks showed 29 (12%) of newly formed bone and 19 (3%) BBM in the test group. The amount of newly formed bone in the control group was 16 (6%). The results show that mononuclear cells, including mesenchymal stem cells, in combination with BBM as the biomaterial, have the potential to form bone. (C) 2009 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background Several studies have reported certain bone morphogenic proteins (BMPs) to have positive effects on bone generation Although some investigators have studied the effects of human recombinant BMP (rhBMP-2) in sinus augmentation in sheep, none of these studies looked at the placement of implants at the time of sinus augmentation Furthermore, no literature could be found to report on the impact that different implant systems, as well as the positioning of the implants had on bone formation if rhBMP-2 was utilized in sinus-lift procedures Purpose The aim of this study was to compare sinus augmentation with rhBMP-2 on a poly-D, L-lactic-co-glycolic acid gelatine (PLPG) sponge with sinus augmentation with autologous pelvic cancellous bone in the maxillary sinus during the placement of different dental Implants Materials and methods Nine adult female sheep were submitted to bilateral sinus-floor elevation In one side (test group) the sinus lift was performed with rhBMP-2 on a PLPG-sponge, while the contralateral side served as the control by using cancellous bone from the iliac crest Three different implants (Branemark (R), 31 (R) and Straumann (R)) were inserted either simultaneously with the sinus augmentation or as a two staged procedure 6 weeks later The animals were sacrificed at 6 and 12 weeks for histological and histomorphometrical evaluations during which bone-to-implant contact (BIC) and bone density (BD) were evaluated Results BD and BIC were significantly higher at 12 weeks in the test group if the Implants were placed at the time of the sinus lift (p < 0 05) No difference was observed between the different implant systems or positions Conclusions The use of rhBMP-2 with PLPG-sponge increased BIC as well as BD in the augmented sinuses if compared to autologous bone Different implant systems and positions of the implants had no effect on BIC or BD (C) 2010 European Association for Cranio-Maxillo-Facial Surgery