628 resultados para serotonergic neurotransmission
Resumo:
Although glycine receptor Cl- channels (GlyRs) have long been known to mediate inhibitory neurotransmission onto spinal nociceptive neurons, their therapeutic potential for peripheral analgesia has received little attention. However, it has been shown that alpha 3-subunit-containing GlyRs are concentrated into regions of the spinal cord dorsal horn where nociceptive afferents terminate. Furthermore, inflammatory mediators specifically inhibit alpha 3-containing GlyRs, and deletion of the murine alpha 3 gene confers insensitivity to chronic inflammatory pain. This strongly implicates GlyRs in the inflammation-mediated disinhibition of centrally projecting nociceptive neurons. Future therapies aimed at specifically increasing current flux through alpha 3-containing GlyRs may prove effective in providing analgesia.
Resumo:
Sensory transduction in the mammalian cochlea requires the maintenance of specialized fluid compartments with distinct ionic compositions. This is achieved by the concerted action of diverse ion channels and transporters, some of which can interact with the PDZ scaffolds, Na+-H+ exchanger regulatory factors 1 and 2 (NHERF-1, NHERF-2). Here, we report that NHERF-1 and NHERF-2 are widely expressed in the rat cochlea, and that their expression is developmentally regulated. Reverse transcription/polymerase chain reaction (RT-PCR) and Western blotting initially confirmed the RNA and protein expression of NHERFs. We then performed immunohistochemistry on cochlea during various stages of postnatal development. Prior to the onset of hearing (P8), NHERF-1 immunolabeling was prominently polarized to the apical membrane of cells lining the endolymphatic compartment, including the stereocilia and cuticular plates of the inner and outer hair cells, marginal cells of the stria vascularis, Reissner's epithelia, and tectorial membrane. With maturation (P21, P70), NHERF-1 immunolabeling was reduced in the above structures, whereas labeling increased in the apical membrane of the interdental cells of the spiral limbus and the inner and outer sulcus cells, Hensen's cells, the inner and outer pillar cells, Deiters cells, the inner border cells, spiral ligament fibrocytes, and spiral ganglion neurons (particularly type II). NHERF-1 expression in strial basal and intermediate cells was persistent. NHERF-2 immunolabeling was similar to that for NHERF-1 during postnatal development, with the exception of expression in the synaptic regions beneath the outer hair cells. NHERF-1 and NHERF-2 co-localized with glial fibrillary acidic protein and vimentin in glia. The cochlear localization of NHERF scaffolds suggests that they play important roles in the developmental regulation of ion transport, homeostasis, and auditory neurotransmission.
Resumo:
Little is known about the nature of the calcium channels controlling neurotransmitter release from preganglionic parasympathetic nerve fibres. In the present study, the effects of selective calcium channel antagonists and amiloride were investigated on ganglionic neurotransmission. Conventional intracellular recording and focal extracellular recording techniques were used in rat submandibular and pelvic ganglia, respectively. Excitatory postsynaptic potentials and excitatory postsynaptic currents preceded by nerve terminal impulses were recorded as a measure of acetylcholine release from parasympathetic and sympathetic preganglionic fibres following nerve stimulation. The calcium channel antagonists omega-conotoxin GVIA (N type), nifedipine and nimodipine (L type), omega-conotoxin MVIIC and omega-agatoxin IVA (P/Q type), and Ni2+ (R type) had no functional inhibitory effects on synaptic transmission in both submandibular and pelvic ganglia. The potassium-sparing diuretic, amiloride, and its analogue, dimethyl amiloride, produced a reversible and concentration-dependent inhibition of excitatory postsynaptic potential amplitude in the rat submandibular ganglion. The amplitude and frequency of spontaneous excitatory postsynaptic potentials and the sensitivity of the postsynaptic membrane to acetylcholine were unaffected by amiloride. In the rat pelvic ganglion, amiloride produced a concentration-dependent inhibition of excitatory postsynaptic currents without causing any detectable effects on the amplitude or configuration of the nerve terminal impulse. These results indicate that neurotransmitter release from preganglionic parasympathetic and sympathetic nerve terminals is resistant to inhibition by specific calcium channel antagonists of N-, L-, P/Q- and R-type calcium channels. Amiloride acts presynaptically to inhibit evoked transmitter release, but does not prevent action potential propagation in the nerve terminals, suggesting that amiloride may block the pharmacologically distinct calcium channel type(s) on rat preganglionic nerve terminals. (C) 1999 IBRO. Published by Elsevier Science Ltd.
Resumo:
The present study used electrical stimulation to distinguish the vesicular from the cytoplasmic component of transmitter release in human autopsy synaptosomes. We demonstrate that the present electrical stimulation paradigm can elicit successive release pulses from synaptosome preparation.
Resumo:
Objectives Ecstasy is a recreational drug whose active ingredient, 3,4-methylenedioxymethamphetamine (MDMA), acts predominantly on the serotonergic system. Although MDMA is known to be neurotoxic in animals, the long-term effects of recreational Ecstasy use in humans remain controversial but one commonly reported consequence is mild cognitive impairment particularly affecting verbal episodic memory. Although event-related potentials (ERPs) have made significant contributions to our understanding of human memory processes, until now they have not been applied to study the long-term effects of Ecstasy. The aim of this study was to examine the effects of past Ecstasy use on recognition memory for both verbal and non-verbal stimuli using ERPs. Methods We compared the ERPs of 15 Ecstasy/polydrug users with those of 14 cannabis users and 13 non-illicit drug users as controls. Results Despite equivalent memory performance, Ecstasy/polydrug users showed an attenuated late positivity over left parietal scalp sites, a component associated with the specific memory process of recollection. Conlusions This effect was only found in the word recognition task which is consistent with evidence that left hemisphere cognitive functions are disproportionately affected by Ecstasy, probably because the serotonergic system is laterally asymmetrical. Experimentally, decreasing central serotonergic activity through acute tryptophan depletion also selectively impairs recollection, and this too suggests the importance of the serotonergic system. Overall, our results suggest that Ecstasy users, who also use a wide range of other drugs, show a durable abnormality in a specific ERP component thought to be associated with recollection.
Resumo:
Introduction: Tourette syndrome is a neurodevelopmental disorder characterized by multiple motor tics and at least one vocal/phonic tic. Clinical phenotypes show a wide variability, often incorporating behavioral symptoms. The exact pathophysiology of Tourette syndrome is unknown, however genetic vulnerability and alterations in dopaminergic neurotransmission have consistently been reported. Other biochemical pathways, including histaminergic neurotransmission, are likely to be involved but have received relatively little attention until recently. Areas covered: We conducted a systematic literature review focusing on the role of histaminergic neurotransmission and its pharmacological modulation in Tourette syndrome. We identified a number of relevant original studies published over the last five years, mainly focusing on genetic aspects. Expert opinion: There is converging evidence from recent studies supporting the hypothesis that histaminergic neurotransmission may play a role in the pathophysiology of Tourette syndrome. Most studies focused on the role of the histidine decarboxylase gene and the potential usefulness of histidine decarboxylase knockout mice as an experimental model for studying neurochemical function in Tourette syndrome. There have been no large scale studies assessing the use of histaminergic medications in the management of Tourette syndrome. This would be an important area for future research, with direct implications for the clinical management of selected phenotypes.
Resumo:
Despite the multiplicity of approaches and techniques so far applied for identifying the pathophysiological mechanisms of photosensitive epilepsy, a generally agreed explanation of the phenomenon is still lacking. The present thesis reports on three interlinked original experimental studies conducted to explore the neurophysiological correlates and the phatophysiological mechanism of photosensitive epilepsy. In the first study I assessed the role of the habituation of the Visual Evoked Response test as a possible biomarker of epileptic visual sensitivity. The two subsequent studies were designed to address specific research questions emerging from the results of the first study. The findings of the three intertwined studies performed provide experimental evidence that photosensitivity is associated with changes in a number of electrophysiological measures suggestive of altered balance between excitatory and inhibitory cortical processes. Although a strong clinical association does exist between specific epileptic syndromes and visual sensitivity, results from this research indicate that photosensitivity trait seems to be the expression of specific pathophysiological mechanisms quite distinct from the “epileptic” phenotype. The habituation of Pattern Reversal Visual Evoked Potential (PR-VEP) appears as a reliable candidate endo-phenotype of visual sensitivity. Interpreting the findings of this study in the context of the broader literature on visual habituation we can hypothesise the existence of a shared neurophysiological background between photosensitive epilepsy and migraine. Future studies to elucidate the relationship between the proposed indices of cortical excitability and specific polymorphisms of excitatroy and inhibitory neurotransmission will need to be conducted to assess their potential role as biomarkers of photosensitivity.
Resumo:
The results of an investigation into how stressors interact with the action of serotonergic agents in animal models of anxiety are presented. Water deprivation and restraint both increased plasma corticosterone concentrations and elevated 5-HT turnover. In the elevated X-maze, water deprivation had a duration-dependent "anxiolytic" effect. The effect of restraint was dependent on the duration of restraint and was to inhibit maze exploration. Water-deprivation did not influence the action of diazepam or any 5-HT1A ligand in the X-maze. Restraint switched the "anxiogenic" effect of 8-0H-DPAT to either "anxiolytic" or inactive, depending on the time after the restraint when testing was performed. The Vogel conflict test detected an "anxiolytic" "anxiolytic"V"anxiolytic""anxiolytic" effect of buspirone which was additive with "anxiolytic" effects of pindolol and propranolol. Diazepam and fluoxetine were also active, but 8-0H-DPAT, ipsapirone, gepirone and yohimbine were inactive. In the elevated X-maze, "anxiogenic" responses to picrotoxin, flumazenil, RU 24969, CGS 12066B, fluoxetine and 8-0H-DPAT were detected. Other 5-HT1A ligands were inactive. Diazepam and corticosterone had "anxiolytic" effects. Increasing light intensity did not change behaviour on the elevated X-maze, but was able to reverse the effect of 8- OH-DPAT to an "anxiolytic" action. This effect was attributed to a presynaptic mechanism, because it was abolished by pCPA. The occurence of different behaviours in different reglons of the maze was shown to be susceptible to modulation by "anxiolytic" and "anxiogenic" drugs. These results are discussed in the context of there being at least two separate 5-HT mechanisms which are involved in the control of anxiety.
Resumo:
Cannabinoids modulate inhibitory GABAergic neurotransmission in many brain regions. Within the temporal lobe, cannabinoid receptors are highly expressed, and are located presynaptically at inhibitory terminals. Here, we have explored the role of type-1 cannabinoid receptors (CB1Rs) at the level of inhibitory synaptic currents and field-recorded network oscillations. We report that arachidonylcyclopropylamide, an agonist at CB1R, inhibits GABAergic synaptic transmission onto both superficial and deep medial entorhinal (mEC) neurones, but this has little effect on network oscillations in beta/gamma frequency bands. By contrast, the CB1R antagonist/inverse agonist LY320135 (500?nM), increased GABAergic synaptic activity and beta/gamma oscillatory activity in superficial mEC, was suppressed, whilst that in deep mEC was enhanced. These data indicate that cannabinoid-mediated effects on inhibitory synaptic activity may be constitutively active in vitro, and that modulation of CB1R activation using inverse agonists unmasks complex effects of CBR function on network activity.
Resumo:
To date, it has been thought that cannabinoid receptors in CNS are primarily of the CB1R subtype, with CB2R expressed only in glia and peripheral tissues. However, evidence for the expression of CB2 type cannabinoid receptors at neuronal sites in the CNS is building through anatomical localization of receptors and mRNA in neurons and behavioural studies of central effects of CB2R agonists. In the medial entorhinal area of the rat, we found that blockade of CB1R did not occlude suppression of GABAergic inhibition by the non-specific endogenous cannabinoid 2-AG, suggesting that CB1R could not account fully for the effects of 2-AG. Suppression could be mimicked using the CB2R agonist JWH-133 and reversed by the CB2R inverse agonist AM-630, indicating the presence of functional CB2R. When we reversed the order of drug application AM-630 blocked the effects of the CB2R agonist JWH-133, but not the CB1R inverse agonist LY320135. JTE-907, a CB2R inverse agonist structurally unrelated to AM-630 elicited increased GABAergic neurotransmission at picomolar concentrations. Analysis of mIPSCs revealed that CB2R effects were restricted to action potential dependent, but not action potential independent GABA release. These data provide pharmacological evidence for functional CB2R at CNS synapses.
Resumo:
Background: Investigating genetic modulation of emotion processing may contribute to the understanding of heritable mechanisms of emotional disorders. The aim of the present study was to test the effects of catechol- O-methyltransferase (COMT) val158met and serotonin-transporter-linked promoter region (5-HTTLPR) polymorphisms on facial emotion processing in healthy individuals. Methods: Two hundred and seventy five (167 female) participants were asked to complete a computerized facial affect recognition task, which involved four experimental conditions, each containing one type of emotional face (fearful, angry, sad or happy) intermixed with neutral faces. Participants were asked to indicate whether the face displayed an emotion or was neutral. The COMT-val158met and 5-HTTLPR polymorphisms were genotyped. Results: Met homozygotes (COMT) showed a stronger bias to perceive neutral faces as expressions of anger, compared with val homozygotes. However, the S-homozygotes (5-HTTLPR) showed a reduced bias to perceive neutral faces as expressions of happiness, compared to L-homozygotes. No interaction between 5-HTTLPR and COMT was found. Conclusions: These results add to the knowledge of individual differences in social cognition that are modulated via serotonergic and dopaminergic systems. This potentially could contribute to the understanding of the mechanisms of susceptibility to emotional disorders. © 2013 Elsevier Masson SAS.
Resumo:
Genome-wide association studies in bipolar disorder (BD)1 have implicated a single-nucleotide polymorphism (rs1006737, G right arrow A) in the CACNA1C gene, which encodes for the alpha 1c (CAV1.2) subunit of the voltage-gated, L-type calcium channel. Neuroimaging studies of healthy individuals report that this risk allele modulates brain function within limbic (amygdala, anterior cingulate gyrus) and hippocampal regions during tasks of reward processing2, 3 and episodic memory. Moreover, animal studies suggest that the CaV1.2 L-type calcium channels influence emotional behaviour through enhanced neurotransmission via the lateral amygdala pathway. On the basis of this evidence, we tested the hypotheses that the CACNA1C rs1006737 risk allele will modulate neural responses within predefined prefrontal and subcortical regions of interest during emotional face processing and that this effect would be amplified in BD patients.
Resumo:
Multiple physiological systems regulate the electric communication signal of the weakly electric gymnotiform fish, Brachyhypopomus pinnicaudatus. Fish were injected with neuroendocrine probes which identified pharmacologically relevant serotonin (5-HT) receptors similar to the mammalian 5-HT1AR and 5-HT2AR. Peptide hormones of the hypothalamic-pituitary-adrenal/interrenal axis also augment the electric waveform. These results indicate that the central serotonergic system interacts with the hypothalamic-pituitary-interrenal system to regulate communication signals in this species. The same neuroendocrine probes were tested in females before and after introducing androgens to examine the relationship between sex steroid hormones, the serotonergic system, melanocortin peptides, and EOD modulations. Androgens caused an increase in female B. pinnicaudatus responsiveness to other pharmacological challenges, particularly to the melanocortin peptide adrenocorticotropic hormone (ACTH). A forced social challenge paradigm was administered to determine if androgens are responsible for controlling the signal modulations these fish exhibit when they encounter conspecifics. Males and females responded similarly to this social challenge construct, however introducing androgens caused implanted females to produce more exaggerated responses. These results confirm that androgens enhance an individual's capacity to produce an exaggerated response to challenge, however another unidentified factor appears to regulate sex-specific behaviors in this species. These results suggest that the rapid electric waveform modulations B. pinnicaudatus produces in response to conspecifics are situation-specific and controlled by activation of different serotonin receptor types and the subsequent effect on release of pituitary hormones.
Resumo:
Sexually-selected communication signals can be used by competing males to settle contests without incurring the costs of fighting. The ability to dynamically regulate the signal in a context-dependent manner can further minimize the costs of male aggressive interactions. Such is the case in the gymnotiform fish Brachyhypopomus gauderio, which, by coupling its electric organ discharge (EOD) waveform to endocrine systems with circadian, seasonal, and behavioral drivers, can regulate its signal to derive the greatest reproductive benefit. My dissertation research examined the functional role of the EOD plasticity observed in male B. gauderio and the physiological mechanisms that regulate the enhanced male EOD. To evaluate whether social competition drives the EOD changes observed during male-male interactions, I manipulated the number of males in breeding groups to create conditions that exemplified low and high competition and measured their EOD and steroid hormone levels. My results showed that social competition drives the enhancement of the EOD amplitude of male B. gauderio. In addition, changes in the EOD of males due to changes in their social environment were paralleled by changes in the levels of androgens and cortisol. I also examined the relationship between body size asymmetry, EOD waveform parameters, and aggressive physical behaviors during male-male interactions in B. gauderio, in order to understand more fully the role of EOD waveforms as reliable signals. While body size was the best determinant of dominance in male B. gauderio, EOD amplitude reliably predicted body condition, a composite of length and weight, for fish in good body condition. To further characterize the mechanisms underlying the relationship between male-male interactions and EOD plasticity, I identified the expression of the serotonin receptor 1A, a key player in the regulation of aggressive behavior, in the brains of B. gauderio. I also identified putative regulatory regions in this receptor in B. gauderio and other teleost fish, highlighting the presence of additional plasticity. In conclusion, male-male competition seems to be a strong selective driver in the evolution of the male EOD plasticity in B. gauderio via the regulatory control of steroid hormones and the serotonergic system.