938 resultados para separazione gas PTMSP membrane grafene cattura CO2
Resumo:
The principal gaseous carbon-containing components identified in the first 400 m of sediment at Deep Sea Drilling Project Site 533, Leg 76, are methane (CH4) and carbon dioxide (CO2). Below a sub-bottom depth of about 25 m, sediment cores commonly contained pockets caused by the expansion of gas upon core recovery. The carbon isotopic composition (d13C per mil relative to PDB standard) of CH4 and CO2 in these gas pockets has been measured, resulting in the following observations: (1) d13C-CH4 values increase with depth from approximately -94 per mil in the uppermost sediment to about -66 per mil in the deepest sediment, reflecting a systematic but nonlinear depletion of 12C with depth. (2) d13C-CO2 values also increase with depth of sediment from about -25 per mil to about -4 per mil, snowing a depletion of 12C that closely parallels the trend of the isotopic composition of CH4. The magnitude and parallel distribution of d13C values for both CH4 and CO2 are consistent with the concept that the formation of the CH4 resulted from the microbiological reduction of CO2 from organic substances. These results imply that CH4 and CO2 incorporated in gas hydrates at this site are biogenic.
Resumo:
Rate of CO2 assimilation was determined above the Broken Spur and TAG active hydrothermal fields for three main ecosystems: (1) hydrothermal vents; (2) 300 m near-bottom layer of plume water; and (3) bottom sediments. In water samples from warm (40-45°C) vents assimilation rates were maximal and reached 2.82-3.76 µg C/l/day. In plume waters CO2 assimilation rates ranged from 0.38 to 0.65 µg C/l/day. In bottom sediments CO2 assimilation rates varied from 0.8 to 28.0 µg C/l/day, rising up to 56 mg C/kg/day near shrimp swarms. In the most active plume zone of the long-living TAG field bacterial production of organic matter (OM) from carbonic is up to 170 mg C/m**2/day); production of autotrophic process of bacterial chemosynthesis reaches about 90% (156 mg C/m**2/day). Thus, chemosynthetic production of OM in September-October is almost equal to that of photosynthetic production in the oceanic region. Bacterial production of OM above the Broken Spur hydrothermal field is one order lower and reaches only 20 mg C/m**2/day.
Resumo:
A suite of gas samples obtained from gas pockets and sediments of the Nankai accretionary prism (Site 808) has been analyzed for their gas composition and carbon and hydrogen isotope ratios. Gases collected from gas pockets between 10 and 555 mbsf consist of CH4 and CO2. Stable carbon isotope ratios of these two components point to a bacterial formation of methane via CO2-reduction that is also supported by D/H ratios of methane. Methane desorbed from sediments by a vacuum/acid treatment is of bacterial and thermal origin. Mixing between these gas types is indicated by molecular composition and carbon isotope ratios. Diagenetic processes at low temperatures can explain ethane to pentane concentrations from 0 to 850 mbsf. Between 850 mbsf and the basaltic basement hydrocarbon occurrences are related to catagenetic processes at elevated temperatures. Thermal alteration of organic matter is reflected through different gas parameters. Propane carbon isotope values of a sample from the zone of the frontal thrust indicate that the gas likely migrated from sediments of a higher maturity into the immature sediments at 366 mbsf.
Resumo:
The seas around the island of Ischia (Italy) have a lowered pH as a result of volcanic gas vents that emit carbon dioxide from the sea floor at ambient seawater temperatures. These areas of acidified seawater provide natural laboratories in which to study the long-term biological response to rising CO2 levels. Benthic foraminifera (single-celled protists) are particularly interesting as they have short life histories, are environmentally sensitive and have an excellent fossil record. Here, we examine changes in foraminiferal assemblages along pH gradients at CO2 vents on the coast of Ischia and show that the foraminiferal distribution, diversity and nature of the fauna change markedly in the living assemblages as pH decreases.
Resumo:
Since the start of last century, methanol synthesis has attracted great interests because of its importance in chemical industries and its potential as an environmentally friendly energy carrier. The catalyst for the methanol synthesis has been a key area of research in order to optimize the reaction process. In the literature, the nature of the active site and the effects of the promoter and support have been extensively investigated. In this updated review, the recent progresses in the catalyst innovation, optimization of the reaction conditions, reaction mechanism, and catalyst performance in methanol synthesis are comprehensively discussed. Key issues of catalyst improvement are highlighted, and areas of priority in R&D are identified in the conclusions.
Resumo:
We present new simulation results for the packing of single-center and three-center models of carbon dioxide at high pressure in carbon slit pores. The former shows a series of packing transitions that are well described by our density functional theory model developed earlier. In contrast, these transitions are absent for the three-center model. Analysis of the simulation results shows that alternations of flat-lying molecules and rotated molecules can occur as the pore width is increased. The presence or absence of quadrupoles has negligible effect on these high-density structures.
Resumo:
High-quality nanometer thick ultramicroporous membranes were prepared from silica sol-gel processes and tested for the permeation of binary gas mixtures of He, H-2, CO2, and CH4 across different temperature and partial pressure regimens. Pore size distribution by molecular probing showed that the majority of pore sizes had dimensions below 2.9 Angstrom. In 50:50 binary mixtures, the fluxes of gases increased as a function of temperature, indicating an activated transport mechanism. The ultramicroporous membranes showed high selectivities at 150 degreesC for He/CO2 (30), He/CH4 (93), H-2/CO2 (10), and H-2/CH4 (9) with lower selectivities for CO2/CH4 (5). High activation energies (E-a) were observed for the permeance of 50:50 binary mixtures containing He and H-2 of 22.1-27.5 and 17.6-23.1 kJ.mol(-1), respectively. The E-a for the permeance of the total mixture approached the E-a for the permeance of the molecule with the smaller kinetic diameter (He or H-2).
Resumo:
A dual resistance model with distribution of either barrier or pore diffusional activation energy is proposed in this work for gas transport in carbon molecular sieve (CMS) micropores. This is a novel approach in which the equilibrium is homogeneous, but the kinetics is heterogeneous. The model seems to provide a possible explanation for the concentration dependence of the thermodynamically corrected barrier and pore diffusion coefficients observed in previous studies from this laboratory on gas diffusion in CMS.(1.2) The energy distribution is assumed to follow the gamma distribution function. It is shown that the energy distribution model can fully capture the behavior described by the empirical model established in earlier studies to account for the concentration dependence of thermodynamically corrected barrier and pore diffusion coefficients. A methodology is proposed for extracting energy distribution parameters, and it is further shown that the extracted energy distribution parameters can effectively predict integral uptake and column breakthrough profiles over a wide range of operating pressures.
Resumo:
Coal fired power generation will continue to provide energy to the world for the foreseeable future. However, this energy use is a significant contributor to increased atmospheric CO2 concentration and, hence, global warming. Capture and disposal Of CO2 has received increased R&D attention in the last decade as the technology promises to be the most cost effective for large scale reductions in CO2 emissions. This paper addresses CO2 transport via pipeline from capture site to disposal site, in terms of system optimization, energy efficiency and overall economics. Technically, CO2 can be transported through pipelines in the form of a gas, a supercritical. fluid or in the subcooled liquid state. Operationally, most CO2 pipelines used for enhanced oil recovery transport CO2 as a supercritical fluid. In this paper, supercritical fluid and subcooled liquid transport are examined and compared, including their impacts on energy efficiency and cost. Using a commercially available process simulator, ASPEN PLUS 10.1, the results show that subcooled liquid transport maximizes the energy efficiency and minimizes the Cost Of CO2 transport over long distances under both isothermal and adiabatic conditions. Pipeline transport of subcooled liquid CO2 can be ideally used in areas of cold climate or by burying and insulating the pipeline. In very warm climates, periodic refrigeration to cool the CO2 below its critical point of 31.1 degrees C, may prove economical. Simulations have been used to determine the maximum safe pipeline distances to subsequent booster stations as a function of inlet pressure, environmental temperature and ground level heat flux conditions. (c) 2005 Published by Elsevier Ltd.
Resumo:
In this work, a working model is proposed of molecular sieve silica (MSS) multistage membrane systems for CO cleanup at high temperatures (up to 500 degrees C) in a simulated fuel cell fuel processing system. Gases are described as having little interactions with each other relative to the pore walls due to low isosteric heat of adsorption on silica surfaces and high temperatures. The Arrhenius function for activated transport of pure gases was used to predict mixture concentration in the permeate and retentate streams. Simulation predicted CO could be reduced to levels below the required 50 ppmv for polymer electrolyte membrane fuel cell anodes at a stage H-2/CO selectivity of higher than 40 in 4 series membrane units. Experimental validation showed predicting mixture concentrations required only pure gas permeation data. This model has significant application for setting industrial stretch targets and as a robust basis for complex membrane model configurations. (c) 2006 American Institute of Chemical Engineers.
Operation of polymer electrolyte membrane fuel cells with dry feeds: Design and operating strategies
Resumo:
The operation of polymer electrolyte membrane fuel cells (PEMFCs) with dry feeds has been examined with different fuel cell flow channel designs as functions of pressure, temperature and flow rate. Auto-humidified (or self-humidifying) PEMFC operation is improved at higher pressures and low gas velocities where axial dispersion enhances back-mixing of the product water with the dry feed. We demonstrate auto-humidified operation of the channel-less, self-draining fuel cell, based on a stirred tank reactor; data is presented showing auto-humidified operation from 25 to 115 degrees C at 1 and 3 atm. Design and operating requirements are derived for the auto-humidified operation of the channel-less, self-draining fuel cell. The auto-humidified self-draining fuel cell outperforms a fully humidified serpentine flow channel fuel cell at high current densities. The new design offers substantial benefits for simplicity of operation and control including: the ability to self-drain reducing flooding, the ability to uniformly disperse water removing current gradients and the ability to operate on dry feeds eliminating the need for humidifiers. Additionally, the design lends itself well to a modular design concept. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work was to demonstrate at pilot scale a high level of energy recovery from sewage utilising a primary Anaerobic Migrating Bed Reactor (AMBR) operating at ambient temperature to convert COD to methane. The focus is the reduction in non-renewable CO2 emissions resulting from reduced energy requirements for sewage treatment. A pilot AMBR was operated on screened sewage over the period June 2003 to September 2004. The study was divided into two experimental phases. In Phase 1 the process operated at a feed rate of 10 L/h (HRT 50 h), SRT 63 days, average temperature 28 degrees C and mixing time fraction 0.05. In Phase 2 the operating parameters were 20 L/h, 26 days, 16 degrees C and 0.025. Methane production was 66% of total sewage COD in Phase 1 and 23% in Phase 2. Gas mixing of the reactor provided micro-aeration which suppressed sulphide production. Intermittent gas mixing at a useful power input of 6 W/m(3) provided satisfactory process performance in both phases. Energy consumption for mixing was about 1.5% of the energy conversion to methane in both operating phases. Comparative analysis with previously published data confirmed that methane supersaturation resulted in significant losses of methane in the effluent of anaerobic treatment systems. No cases have been reported where methane was considered to be supersaturated in the effluent. We have shown that methane supersaturation is likely to be significant and that methane losses in the effluent are likely to have been greater than previously predicted. Dissolved methane concentrations were measured at up to 2.2 times the saturation concentration relative to the mixing gas composition. However, this study has also demonstrated that despite methane supersaturation occurring, microaeration can result in significantly lower losses of methane in the effluent (< 11% in this study), and has demonstrated that anaerobic sewage treatment can genuinely provide energy recovery. The goal of demonstrating a high level of energy recovery in an ambient anaerobic bioreactor was achieved. An AMBR operating at ambient temperature can achieve up to 70% conversion of sewage COD to methane, depending on SRT and temperature. (c) 2006 Wiley Periodicals, Inc.
Resumo:
CO2 Geosequestration is seen by many worldwide scientists and engineers as a leading prospective solution to the global warming problem arising from excessive CO2 and other greenhouse gas emissions. CO2 geosequestration in coal seams has two important strategic benefits: the process has an extremely low risk of leakage, due to the adsorbed state of the CO2 and the known reservoir context of essentially-zero leakage into which it is be injected; the second benefit arises from the valuable by-product, clean burning coalbed methane gas. This paper presents the authors’ experience, knowledge and perspective on what coal properties and engineering processes would favour implementing a demonstration or commercial CO2 storage-in-coal project, in Queensland, Australia. As such, it may be considered a template for screening studies to select the optimum coal seam reservoir, and for preliminary studies in designing the injection system and predicting production response to the technology. The paper concludes by examining the current knowledge gaps of CO2 geosequestration in coal, identifying further basic and applied research topics.
Resumo:
Silicalite-1/carbon-graphite composite membranes have been prepared using a standard hydrothermal synthesis method and characterized by XRD, SEM, TGA, BET and permeation experiments. Single gas permeation fluxes and binary mixtures separation and selectivity data are reported for methane, ethane and propane using the composite membranes. Carbon-graphite oxidized for 4 h prior to membrane preparation had the most promising separation properties. The permeation fluxes for the binary mixtures reflect that of the single component flux ratios. At 20 °C the membranes show high separation selectivity toward lighter component in binary mixtures. Single gas permeances for methane and ethane were found to decrease with increasing temperatures while that of propane fluctuates. © 2007 Elsevier Inc. All rights reserved.