995 resultados para sensor classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chebyshev-inequality-based convex relaxations of Chance-Constrained Programs (CCPs) are shown to be useful for learning classifiers on massive datasets. In particular, an algorithm that integrates efficient clustering procedures and CCP approaches for computing classifiers on large datasets is proposed. The key idea is to identify high density regions or clusters from individual class conditional densities and then use a CCP formulation to learn a classifier on the clusters. The CCP formulation ensures that most of the data points in a cluster are correctly classified by employing a Chebyshev-inequality-based convex relaxation. This relaxation is heavily dependent on the second-order statistics. However, this formulation and in general such relaxations that depend on the second-order moments are susceptible to moment estimation errors. One of the contributions of the paper is to propose several formulations that are robust to such errors. In particular a generic way of making such formulations robust to moment estimation errors is illustrated using two novel confidence sets. An important contribution is to show that when either of the confidence sets is employed, for the special case of a spherical normal distribution of clusters, the robust variant of the formulation can be posed as a second-order cone program. Empirical results show that the robust formulations achieve accuracies comparable to that with true moments, even when moment estimates are erroneous. Results also illustrate the benefits of employing the proposed methodology for robust classification of large-scale datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Etched Fiber Bragg Grating (EFBG) sensors are attractive from the point of the inherently high multiplexing ability of fiber based sensors. However, the strong dependence of the sensitivity of EFBG sensors on the fiber diameter requires robust methods for calibration when used for distributed sensing in a large array format. Using experimental data and numerical modelling, we show that knowledge of the wavelength shift during the etch process is necessary for high-fidelity calibration of EFBG arrays. However as this approach requires the monitoring of every element of the sensor array during etching, we also proposed and demonstrated a calibration scheme using data from bulk refractometry measurements conducted post-fabrication without needing any information about the etching process. Although this approach is not as precise as the first one, it may be more practical as there is no requirement to monitor each element of the sensor array. We were able to calibrate the response of the sensors to within 3% with the approach using information acquired during etching and to within 5% using the post-fabrication bulk refractometry approach in spite of the sensitivities of the array element differing by more than a factor of 4. These two approaches present a tradeoff between accuracy and practicality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Room temperature operation, low detection limit and fast response time are highly desirable for a wide range of gas sensing applications. However, the available gas sensors suffer mainly from high temperature operation or external stimulation for response/recovery. Here, we report an ultrasensitive-flexible-silver-nanoparticle based nanocomposite resistive sensor for ammonia detection and established the sensing mechanism. We show that the nanocomposite can detect ammonia as low as 500 parts-per-trillion at room temperature in a minute time. Furthermore, the evolution of ammonia from different chemical reactions has been demonstrated using the nanocomposite sensor as an example. Our results demonstrate the proof-of-concept for the new detector to be used in several applications including homeland security, environmental pollution and leak detection in research laboratories and many others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moving shadow detection and removal from the extracted foreground regions of video frames, aim to limit the risk of misconsideration of moving shadows as a part of moving objects. This operation thus enhances the rate of accuracy in detection and classification of moving objects. With a similar reasoning, the present paper proposes an efficient method for the discrimination of moving object and moving shadow regions in a video sequence, with no human intervention. Also, it requires less computational burden and works effectively under dynamic traffic road conditions on highways (with and without marking lines), street ways (with and without marking lines). Further, we have used scale-invariant feature transform-based features for the classification of moving vehicles (with and without shadow regions), which enhances the effectiveness of the proposed method. The potentiality of the method is tested with various data sets collected from different road traffic scenarios, and its superiority is compared with the existing methods. (C) 2013 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and analysis of an optical read-out scheme based on a grated waveguide (GWG) resonator for interrogating microcantilever sensor arrays is presented. The optical system consisting of a micro cantilever monolithically integrated in proximity to a grated waveguide (GWG), is realized in silicon optical bench platform. The mathematical analysis of the optical system is performed using a Fabry-Perot interferometer model with a lossy cavity formed between the cantilever and the GWG and an analytical expression is derived for the optical power transmission as a function of the cantilever deflection which corresponds to cavity width variation. The intensity transmission of the optical system for different cantilever deflections estimated using the analytical expression captures the essential features exhibited by a FDTD numerical model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed SmartConnect, a tool that addresses the growing need for the design and deployment of multihop wireless relay networks for connecting sensors to a control center. Given the locations of the sensors, the traffic that each sensor generates, the quality of service (QoS) requirements, and the potential locations at which relays can be placed, SmartConnect helps design and deploy a low-cost wireless multihop relay network. SmartConnect adopts a field interactive, iterative approach, with model based network design, field evaluation and relay augmentation performed iteratively until the desired QoS is met. The design process is based on approximate combinatorial optimization algorithms. In the paper, we provide the design choices made in SmartConnect and describe the experimental work that led to these choices. Finally, we provide results from some experimental deployments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report a novel hydrogel functionalized optical Fiber Bragg Grating (FBG) sensor based on chemo-mechanical-optical sensing, and demonstrate its specific application in pH activated process monitoring. The sensing mechanism is based on the stress due to ion diffusion and polymer phase transition which produce strain in the FBG. This results in shift in the Bragg wavelength which is detected by an interrogator system. A simple dip coating method to coat a thin layer of hydrogel on the FBG has been established. The gel consists of sodium alginate and calcium chloride. Gel formation is observed in real-time by continuously monitoring the Bragg wavelength shift. We have demonstrated pH sensing in the range of pH of 2 to 10. Another interesting phenomenon is observed by swelling and deswelling of FBG functionalized with hydrogel by a sequence of alternate dipping between acidic and base solutions. It is observed that the Bragg wavelength undergoes reversible and repeatable pH dependent switching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the design, development, and performance study of a packaged piezoelectric thin film impact sensor, and its potential application in non-destructive material discrimination. The impact sensing element employed was a thin circular diaphragm of flexible Phynox alloy. Piezoelectric ZnO thin film as an impact sensing layer was deposited on to the Phynox alloy diaphragm by RF reactive magnetron sputtering. Deposited ZnO thin film was characterized by X-ray diffraction (XRD), Atomic Force Microscopy (AFM), and Scanning Electron Microscopy (SEM) techniques. The d(31) piezoelectric coefficient value of ZnO thin film was 4.7 pm V-1, as measured by 4-point bending method. ZnO film deposited diaphragm based sensing element was properly packaged in a suitable housing made of High Density Polyethylene (HDPE) material. Packaged impact sensor was used in an experimental set-up, which was designed and developed in-house for non-destructive material discrimination studies. Materials of different densities (iron, glass, wood, and plastic) were used as test specimens for material discrimination studies. The analysis of output voltage waveforms obtained reveals lots of valuable information about the impacted material. Impact sensor was able to discriminate the test materials on the basis of the difference in their densities. The output response of packaged impact sensor shows high linearity and repeatability. The packaged impact sensor discussed in this paper is highly sensitive, reliable, and cost-effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the formulation and performance analysis of four techniques for detection of a narrowband acoustic source in a shallow range-independent ocean using an acoustic vector sensor (AVS) array. The array signal vector is not known due to the unknown location of the source. Hence all detectors are based on a generalized likelihood ratio test (GLRT) which involves estimation of the array signal vector. One non-parametric and three parametric (model-based) signal estimators are presented. It is shown that there is a strong correlation between the detector performance and the mean-square signal estimation error. Theoretical expressions for probability of false alarm and probability of detection are derived for all the detectors, and the theoretical predictions are compared with simulation results. It is shown that the detection performance of an AVS array with a certain number of sensors is equal to or slightly better than that of a conventional acoustic pressure sensor array with thrice as many sensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents classification, representation and extraction of deformation features in sheet-metal parts. The thickness is constant for these shape features and hence these are also referred to as constant thickness features. The deformation feature is represented as a set of faces with a characteristic arrangement among the faces. Deformation of the base-sheet or forming of material creates Bends and Walls with respect to a base-sheet or a reference plane. These are referred to as Basic Deformation Features (BDFs). Compound deformation features having two or more BDFs are defined as characteristic combinations of Bends and Walls and represented as a graph called Basic Deformation Features Graph (BDFG). The graph, therefore, represents a compound deformation feature uniquely. The characteristic arrangement of the faces and type of bends belonging to the feature decide the type and nature of the deformation feature. Algorithms have been developed to extract and identify deformation features from a CAD model of sheet-metal parts. The proposed algorithm does not require folding and unfolding of the part as intermediate steps to recognize deformation features. Representations of typical features are illustrated and results of extracting these deformation features from typical sheet metal parts are presented and discussed. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid diagnostics and virtual imaging of damages in complex structures like folded plate can help reduce the inspection time for guided wave based NDE and integrated SHM. Folded plate or box structure is one of the major structural components for increasing the structural strength. Damage in the folded plate, mostly in the form of surface breaking cracks in the inaccessible zone is a usual problem in aerospace structures. One side of the folded plate is attached (either riveted or bonded) to adjacent structure which is not accessible for immediate inspection. The sensor-actuator network in the form of a circular array is placed on the accessible side of the folded plate. In the present work, a circular array is employed for scanning the entire folded plate type structure for damage diagnosis and wave field visualization of entire structural panel. The method employs guided wave with relatively low frequency bandwidth of 100-300 kHz. Change in the response signal with respect to a baseline signal is used to construct a quantitative relationship with damage size parameters. Detecting damage in the folded plate by using this technique has significant potential for off-line and on-line SHM technologies. By employing this technique, surface breaking cracks on inaccessible face of the folded plate are detected without disassembly of structure in a realistic environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of temperature and pressure exerted on the leeward surface of a blunt cone specimen has been demonstrated in the present work in a hypersonic wind tunnel using fiber Bragg grating (FBG) sensors. The experiments were conducted on a 30 degrees apex-angle blunt cone with 51 mm base diameter at wind flow speeds of Mach 6.5 and 8.35 in a 300 mm hypersonic wind tunnel of Indian Institute of Science, Bangalore. A special pressure insensitive temperature sensor probe along with the conventional bare FBG sensors was used for explicit temperature and aerodynamic pressure measurement respectively on the leeward surface of the specimen. computational fluid dynamics (CFD) simulation of the flow field around the blunt cone specimen has also been carried out to obtain the temperature and pressure at conditions analogous to experiments. The results obtained from FBG sensors and the CFD simulations are found to be in good agreement with each other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myopathies are muscular diseases in which muscle fibers degenerate due to many factors such as nutrient deficiency, infection and mutations in myofibrillar etc. The objective of this study is to identify the bio-markers to distinguish various muscle mutants in Drosophila (fruit fly) using Raman Spectroscopy. Principal Components based Linear Discriminant Analysis (PC-LDA) classification model yielding >95% accuracy was developed to classify such different mutants representing various myopathies according to their physiopathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study consistency properties of surrogate loss functions for general multiclass classification problems, defined by a general loss matrix. We extend the notion of classification calibration, which has been studied for binary and multiclass 0-1 classification problems (and for certain other specific learning problems), to the general multiclass setting, and derive necessary and sufficient conditions for a surrogate loss to be classification calibrated with respect to a loss matrix in this setting. We then introduce the notion of \emph{classification calibration dimension} of a multiclass loss matrix, which measures the smallest `size' of a prediction space for which it is possible to design a convex surrogate that is classification calibrated with respect to the loss matrix. We derive both upper and lower bounds on this quantity, and use these results to analyze various loss matrices. In particular, as one application, we provide a different route from the recent result of Duchi et al.\ (2010) for analyzing the difficulty of designing `low-dimensional' convex surrogates that are consistent with respect to pairwise subset ranking losses. We anticipate the classification calibration dimension may prove to be a useful tool in the study and design of surrogate losses for general multiclass learning problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of developing privacy-preserving machine learning algorithms in a dis-tributed multiparty setting. Here different parties own different parts of a data set, and the goal is to learn a classifier from the entire data set with-out any party revealing any information about the individual data points it owns. Pathak et al [7]recently proposed a solution to this problem in which each party learns a local classifier from its own data, and a third party then aggregates these classifiers in a privacy-preserving manner using a cryptographic scheme. The generaliza-tion performance of their algorithm is sensitive to the number of parties and the relative frac-tions of data owned by the different parties. In this paper, we describe a new differentially pri-vate algorithm for the multiparty setting that uses a stochastic gradient descent based procedure to directly optimize the overall multiparty ob-jective rather than combining classifiers learned from optimizing local objectives. The algorithm achieves a slightly weaker form of differential privacy than that of [7], but provides improved generalization guarantees that do not depend on the number of parties or the relative sizes of the individual data sets. Experimental results corrob-orate our theoretical findings.