935 resultados para rotation invariant
Resumo:
Crop simulation models allow analyzing various tillage-rotation combinations and exploring management scenarios. This study was conducted to test the DSSAT (Decision Support System for Agrotechnology Transfer) modelling system in rainfed semiarid central Spain. The focus is on the combined effect of tillage system and winter cereal-based rotations (cereal/legume/fallow) on the crop yield and soil quality. The observed data come from a 16-year field experiment. The CERES and CROPGRO models, included in DSSAT v4.5, were used to simulate crop growth and yield, and DSSAT- CENTURY was used in the soil organic carbon (SOC) and soil nitrogen (SN) simulations. Genetic coefficients were calibrated using part of the observed data. Field observations showed that barley grain yield was lower for continuous cereal (BB) than for vetch (VB) and fallow (FB) rotations for both tillage systems. The CERES-Barley model also reflected this trend. The model predicted higher yield in the conventional tillage (CT) than in the no tillage (NT) probably due to the higher nitrogen availability in the CT, shown in the simulations. The SOC and SN in the top layer only, were higher in NT than in CT, and decreased with depth in both simulated and observed values. These results suggest that CT-VB and CT-FB were the best combinations for the dry land conditions studied. However, CT presented lower SN and SOC content than NT. This study shows how models can be a useful tool for assessing and predicting crop growth and yield, under different management systems and under specific edapho-climatic conditions. Additional key words: CENTURY model; CERES-Barley; crop simulation models; DSSAT; sequential simula- tion; soil organic carbon.
Resumo:
Conservation tillage and crop rotation have spread during the last decades because promotes several positive effects (increase of soil organic content, reduction of soil erosion, and enhancement of carbon sequestration) (Six et al., 2004). However, these benefits could be partly counterbalanced by negative effects on the release of nitrous oxide (N2O) (Linn and Doran, 1984). There is a lack of data on long-term tillage system study, particularly in Mediterranean agro-ecosystems. The aim of this study was to evaluate the effects of long-term (>17 year) tillage systems (no tillage (NT), minimum tillage (MT) and conventional tillage (CT)); and crop rotation (wheat (W)-vetch (V)-barley (B)) versus wheat monoculture (M) on N2O emissions. Additionally, Yield-scaled N2O emissions (YSNE) and N uptake efficiency (NUpE) were assessed for each treatment.
Resumo:
The deformation and damage mechanisms of carbon fiber-reinforced epoxy laminates deformed in shear were studied by means of X-ray computed tomography. In particular, the evolution of matrix cracking, interply delamination and fiber rotation was ascertained as a function of the applied strain. In order to provide quantitative information, an algorithm was developed to automatically determine the crack density and the fiber orientation from the tomograms. The investigation provided new insights about the complex interaction between the different damage mechanisms (i.e. matrix cracking and interply delamination) as a function of the applied strain, ply thickness and ply location within the laminate as well as quantitative data about the evolution of matrix cracking and fiber rotation during deformation
Resumo:
We present a compact formula for the derivative of a 3-D rotation matrix with respect to its exponential coordinates. A geometric interpretation of the resulting expression is provided, as well as its agreement with other less-compact but better-known formulas. To the best of our knowledge, this simpler formula does not appear anywhere in the literature. We hope by providing this more compact expression to alleviate the common pressure to reluctantly resort to alternative representations in various computational applications simply as a means to avoid the complexity of differential analysis in exponential coordinates.
Resumo:
The calibration results of one anemometer equipped with several rotors, varying their size, were analyzed. In each case, the 30-pulses pert turn output signal of the anemometer was studied using Fourier series decomposition and correlated with the anemometer factor (i.e., the anemometer transfer function). Also, a 3-cup analytical model was correlated to the data resulting from the wind tunnel measurements. Results indicate good correlation between the post-processed output signal and the working condition of the cup anemometer. This correlation was also reflected in the results from the proposed analytical model. With the present work the possibility of remotely checking cup anemometer status, indicating the presence of anomalies and, therefore, a decrease on the wind sensor reliability is revealed.
Availability and uptake of trace elements in a forage rotation under conservation and plough tillage
Resumo:
After 14 years under conventional plough tillage (CT) or conservation minimum tillage (MT), the soil available Al, Fe, Mn, Cu and Zn (0-5, 5-15 and 15-30 cm layers) and their plant uptake were evaluated during two years in a ryegrass-maize forage rotation in NW Spain (t emperate-humid region). The three-way ANOVA showed that trace element concentrations in soil were mainly influenced by sampling date, followed by soil depth and tillage system (35-73 %, 7-58 % and 3- 11 % of variance explained, respectively). Excepting for Fe (CT) and Al (CT and MT), the elemental concentrations decreased with depth, the stratification being stronger under MT. For soil available Al, Fe, Mn and Cu, the concentrations were higher in CT than in MT (5-15 and 15-30 cm layers) or were not affected by tillage system (0-5 cm). In contrast, the available Zn contents were higher in MT than CT at the soil surface and did not differ in deeper layers. The concentration of Al, Fe and Cu in crops were not influenced by tillage system, which explain 22 % of Mn variance in maize (CT > MT in the more humid year) and 18 % of Zn variance in ryegrass (MT > CT in both years). However, in the summer crop (maize) the concentrations of Fe, Mn and Zn tended to be higher in MT than in CT under drought conditions, while the opposite was true in the year without water limitation. Therefore, under the studied conditions of climate, soil, tillage and crop rotation, little influence of tillage system on crop nutritive value would be expected. To minimize the potential deficiency of Zn (maize) and Cu (maize and ryegrass) on crop yields the inclusion of these micro-nutrients in fertilization schedule is reco mmended, as well as liming to alleviate Al toxicity on maize crops.
Resumo:
Long-term conservation tillage can modify vertical distribution of nutrients in soil profiles and alter nutrient availability and yields of crops.
Resumo:
Data of diverse crop rotations from five locations across Europe were distributed to modelers to investigate the capability of models to handle complex crop rotations and management interactions.
Resumo:
The ballast pick-up (or ballast train-induced-wind erosion (BTE)) phenomenon is a limiting factor for the maximum allowed operational train speed. The determination of the conditions for the initiation of the motion of the ballast stones due to the wind gust created by high-speed trains is critical to predict the start of ballast pick-up because, once the motion is initiated, a saltation-like chain reaction can take place. The aim of this paper is to present a model to evaluate the effect of a random aerodynamic impulse on stone motion initiation, and an experimental study performed to check the capability of the proposed model to classify trains by their effect on the ballast due to the flow generated by the trains. A measurement study has been performed at kp 69 + 500 on the Madrid – Barcelona High Speed Line. The obtained results show the feasibility of the proposed method, and contribute to a technique for BTE characterization, which can be relevant for the development of train interoperability standards
Resumo:
By combining two previously generated null mutations, Ii° and M°, we produced mice lacking the invariant chain and H-2M complexes, both required for normal cell-surface expression of major histocompatibility complex class II molecules loaded with the usual diverse array of peptides. As expected, the maturation and transport of class II molecules, their expression at the cell surface, and their capacity to present antigens were quite similar for cells from Ii°M° double-mutant mice and from animals carrying just the Ii° mutation. More surprising were certain features of the CD4+ T cell repertoire selected in Ii°M° mice: many fewer cells were selected than in Ii+M° animals, and these had been purged of self-reactive specificities, unlike their counterparts in Ii+M° animals. These findings suggest (i) that the peptides carried by class II molecules on stromal cells lacking H-2M complexes may almost all derive from invariant chain and (ii) that H-2M complexes edit the peptide array displayed on thymic stromal cells in the absence of invariant chain, showing that it can edit, in vivo, peptides other than CLIP.
Resumo:
We report evidence for proton-driven subunit rotation in membrane-bound FoF1–ATP synthase during oxidative phosphorylation. A βD380C/γC87 crosslinked hybrid F1 having epitope-tagged βD380C subunits (βflag) exclusively in the two noncrosslinked positions was bound to Fo in F1-depleted membranes. After reduction of the β–γ crosslink, a brief exposure to conditions for ATP synthesis followed by reoxidation resulted in a significant amount of βflag appearing in the β–γ crosslinked product. Such a reorientation of γC87 relative to the three β subunits can only occur through subunit rotation. Rotation was inhibited when proton transport through Fo was blocked or when ADP and Pi were omitted. These results establish FoF1 as the second example in nature where proton transport is coupled to subunit rotation.
Resumo:
A cell of the bacterium Escherichia coli was tethered covalently to a glass coverslip by a single flagellum, and its rotation was stopped by using optical tweezers. The tweezers acted directly on the cell body or indirectly, via a trapped polystyrene bead. The torque generated by the flagellar motor was determined by measuring the displacement of the laser beam on a quadrant photodiode. The coverslip was mounted on a computer-controlled piezo-electric stage that moved the tether point in a circle around the center of the trap so that the speed of rotation of the motor could be varied. The motor generated ≈4500 pN nm of torque at all angles, regardless of whether it was stalled, allowed to rotate very slowly forwards, or driven very slowly backwards. This argues against models of motor function in which rotation is tightly coupled to proton transit and back-transport of protons is severely limited.
Resumo:
In the most extensive analysis of body size in marine invertebrates to date, we show that the size–frequency distributions of northeastern Pacific bivalves at the provincial level are surprisingly invariant in modal and median size as well as size range, despite a 4-fold change in species richness from the tropics to the Arctic. The modal sizes and shapes of these size–frequency distributions are consistent with the predictions of an energetic model previously applied to terrestrial mammals and birds. However, analyses of the Miocene–Recent history of body sizes within 82 molluscan genera show little support for the expectation that the modal size is an evolutionary attractor over geological time.
Resumo:
In vitro DNA-binding and transcription properties of σ54 proteins with the invariant Arg383 in the putative helix–turn–helix motif of the DNA-binding domain substituted by lysine or alanine are described. We show that R383 contributes to maintaining stable holoenzyme–promoter complexes in which limited DNA opening downstream of the –12 GC element has occurred. Unlike wild-type σ54, holoenzymes assembled with the R383A or R383K mutants could not form activator-independent, heparin-stable complexes on heteroduplex Sinorhizobium meliloti nifH DNA mismatched next to the GC. Using longer sequences of heteroduplex DNA, heparin-stable complexes formed with the R383K and, to a lesser extent, R383A mutant holoenzymes, but only when the activator and a hydrolysable nucleotide was added and the DNA was opened to include the –1 site. Although R383 appears inessential for polymerase isomerisation, it makes a significant contribution to maintaining the holoenzyme in a stable complex when melting is initiating next to the GC element. Strikingly, Cys383-tethered FeBABE footprinting of promoter DNA strongly suggests that R383 is not proximal to promoter DNA in the closed complex. This indicates that R383 is not part of the regulatory centre in the σ54 holoenzyme, which includes the –12 promoter region elements. R383 contributes to several properties, including core RNA polymerase binding and to the in vivo stability of σ54.