996 resultados para root-end cavity preparation
Resumo:
We perform a quantum-mechanical analysis of the pendular cavity, using the positive-P representation, showing that the quantum state of the moving mirror, a macroscopic object, has noticeable effects on the dynamics. This system has previously been proposed as a candidate for the quantum-limited measurement of small displacements of the mirror due to radiation pressure, for the production of states with entanglement between the mirror and the field, and even for superposition states of the mirror. However, when we treat the oscillating mirror quantum mechanically, we find that it always oscillates, has no stationary steady state, and exhibits uncertainties in position and momentum which are typically larger than the mean values. This means that previous linearized fluctuation analyses which have been used to predict these highly quantum states are of limited use. We find that the achievable accuracy in measurement is fat, worse than the standard quantum limit due to thermal noise, which, for typical experimental parameters, is overwhelming even at 2 mK
Resumo:
In this work, we report the synthesis, characterization and catalytic properties of a vanadium oxide-silicon oxide composite xerogel prepared by a soft chemistry approach. In order to obtain such material, we submitted a vanadium pentoxide gel previously synthesized via protonation of metavanadate species to an ""in situ"" progressive polycondensation into silica gel. The material has been characterized by X-ray diffraction, infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. Further, the catalytic activity of this material was evaluated for the epoxidation of styrene and cyclooctene using iodosylbenzene, hydrogen peroxide and m-chloroperbenzoic acid as the oxidizing agent.
Resumo:
This article reports a study on the preparation, densification process, and structural and optical properties of SiO(2)-Ta(2)O(5) nanocomposite films obtained by the sol-gel process. The films were doped with Er(3+) and the Si:Ta molar ratio was 90:10. Values of refractive index, thickness and vibrational modes in terms of the number of layers and thermal annealing time are described for the films. The densification process is accompanied by OH group elimination, increase in the refractive index, and changes in film thickness. Full densification of the film is acquired after 90 min of annealing at 900 degrees C. The onset of crystallization and devitrification, with the growth of Ta(2)O(5) nanocrystals occurs with film densification, evidenced by high-resolution transmission electron microscopy. The Er(3+)-doped nanocomposite annealed at 900 degrees C consists of Ta(2)O(5) nanoparticles, with sizes around 2 nm, dispersed in the SiO(2) amorphous phase. The main emission peak of the film is detected at around 1532 nm, which can be assigned to the (4)I(13/2)->(4)I(15/2) transition of the Er(3+) ions present in the nanocomposites. This band has a full width at half medium of 64 nm, and the lifetime measured for the (4)I(13/2) levels is 5.4 ms, which is broader compared to those of other silicate systems. In conclusion, the films obtained in this work are excellent candidates for use as active planar waveguide. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Proteins found in the root exudates are thought to play a role in the interactions between plants and soil organisms. To gain a better understanding of protein secretion by roots, we conducted a systematic proteomic analysis of the root exudates of Arabidopsis thaliana at different plant developmental stages. In total, we identified 111 proteins secreted by roots, the majority of which were exuded constitutively during all stages of development. However, defense-related proteins such as chitinases, glucanases, myrosinases, and others showed enhanced secretion during flowering. Defense-impaired mutants npr1-1 and NahG showed lower levels of secretion of defense proteins at flowering compared with the wild type. The flowering-defective mutants fca-1, stm-4, and co-1 showed almost undetectable levels of defense proteins in their root exudates at similar time points. In contrast, root secretions of defense-enhanced cpr5-2 mutants showed higher levels of defense proteins. The proteomics data were positively correlated with enzymatic activity assays for defense proteins and with in silico gene expression analysis of genes specifically expressed in roots of Arabidopsis. In conclusion, our results show a clear correlation between defense-related proteins secreted by roots and flowering time.
Resumo:
Background: Guidelines recommend neonatal resuscitation without controlling tidal volume or positive end-expiratory pressure (PEEP). However, these may improve gas exchange, lung volume and outcome. Aim: To investigate resuscitation of very premature lambs with a Laerdal bag without PEEP versus volume guarantee ventilation with PEEP. Methods: Anaesthetized lambs (n = 20) delivered at 125 d gestation were randomized to three groups receiving 15 min resuscitation: (1) Laerdal bag and no PEEP; (2) ventilation with a tidal volume of 5 ml/kg and 8 cm H2O PEEP; (3) ventilation with 10 ml/kg and 8 cm H2O PEEP. They were then all ventilated for 2 h with tidal volumes of 5 or 10 ml/kg, and 8 cm H2O PEEP. Ventilation parameters and blood gases were recorded. Results: Different tidal volumes affected PaCO2 within minutes, with 10 ml/kg causing severe hypocarbia. PEEP had little effect on PaCO2. Oxygenation improved significantly with PEEP of 8 cm H2O, irrespective of tidal volume. Conclusion: Very premature lambs can be resuscitated effectively using volume-guarantee ventilation and PEEP. Tidal volumes affected PaCO2 within minutes but had little effect on oxygenation. PEEP halved the oxygen requirement compared with no PEEP. Resuscitating premature babies with controlled tidal volumes and PEEP might improve their outcome.
Resumo:
OBJECTIVE. The purposes of this study were to use the myocardial delayed enhancement technique of cardiac MRI to investigate the frequency of unrecognized myocardial infarction (MI) in patients with end-stage renal disease, to compare the findings with those of ECG and SPECT, and to examine factors that may influence the utility of these methods in the detection of MI. SUBJECTS AND METHODS. We prospectively performed cardiac MRI, ECG, and SPECT to detect unrecognized MI in 72 patients with end-stage renal disease at high risk of coronary artery disease but without a clinical history of MI. RESULTS. Fifty-six patients (78%) were men ( mean age, 56.2 +/- 9.4 years) and 16 (22%) were women ( mean age, 55.8 +/- 11.4). The mean left ventricular mass index was 103.4 +/- 27.3 g/m(2), and the mean ejection fraction was 60.6% +/- 15.5%. Myocardial delayed enhancement imaging depicted unrecognized MI in 18 patients (25%). ECG findings were abnormal in five patients (7%), and SPECT findings were abnormal in 19 patients (26%). ECG findings were false-negative in 14 cases and false-positive in one case. The accuracy, sensitivity, and specificity of ECG were 79.2%, 22.2%, and 98.1% (p = 0.002). SPECT findings were false-negative in six cases and false-positive in seven cases. The accuracy, sensitivity, and specificity of SPECT were 81.9%, 66.7%, and 87.0% ( not significant). During a period of 4.9-77.9 months, 19 cardiac deaths were documented, but no statistical significance was found in survival analysis. CONCLUSION. Cardiac MRI with myocardial delayed enhancement can depict unrecognized MI in patients with end-stage renal disease. ECG and SPECT had low sensitivity in detection of MI. Infarct size and left ventricular mass can influence the utility of these methods in the detection of MI.
Resumo:
This study presents the possibilities offered by microfluidic structures for the production of polymeric microspheres, using a process based upon the production of an emulsion. LTCC (Low Temperature Co-fired Ceramics) micromixers have been used for the preparation of polymeric microspheres. The effect of the geometry of the micromixers has been studied, with a specific focus on the size of the microspheres. as well as the control release properties of a model protein loaded within these microspheres. (C) 2008 Published by Elsevier B.V.
Resumo:
Background: Different hemodynamic parameters including static indicators of cardiac preload as right ventricular end-diastolic volume index (RVEDVI) and dynamic parameters as pulse pressure variation (PPV) have been used in the decision-making process regarding volume expansion in critically ill patients. The objective of this study was to compare fluid resuscitation guided by either PPV or RVEDVI after experimentally induced hemorrhagic shock. Methods: Twenty-six anesthetized and mechanically ventilated pigs were allocated into control (group I), PPV (group II), or RVEDVI (group III) group. Hemorrhagic shock was induced by blood withdrawal to target mean arterial pressure of 40 mm Hg, maintained for 60 minutes. Parameters were measured at baseline, time of shock, 60 minutes after shock, immediately after resuscitation with hydroxyethyl starch 6% (130/0.4), 1 hour and 2 hours thereafter. The endpoint of fluid resuscitation was determined as the baseline values of PPV and RVEDVI. Statistical analysis of data was based on analysis of variance for repeated measures followed by the Bonferroni test (p < 0.05). Results: Volume and time to resuscitation were higher in group III than in group II (group III = 1,305 +/- 331 mL and group II = 965 +/- 245 mL, p < 0.05; and group III = 24.8 +/- 4.7 minutes and group II = 8.8 +/- 1.3 minutes, p < 0.05, respectively). All static and dynamic parameters and biomarkers of tissue oxygenation were affected by hemorrhagic shock and nearly all parameters were restored after resuscitation in both groups. Conclusion: In the proposed model of hemorrhagic shock, resuscitation to the established endpoints was achieved within a smaller amount of time and with less volume when guided by PPV than when guided by pulmonary artery catheter-derived RVEDVI.
Resumo:
The fluorescence spectrum of a strongly driven two-level atom located inside an optical cavity damped by a narrow-bandwidth squeezed vacuum is studied. We use a dressed atom model approach, first applied to squeezed vacuum problems by Yeoman and Barnett, to derive the master equation of the system and discuss the role of the cavity and the squeezed vacuum in the narrowing of the spectral lines and the population trapping effect. We find that in the presence of a single-mode cavity the effect of squeezing on the fluorescence spectrum is more evident in the linewidths of the Rabi sidebands rather than in the linewidth of the central component. Even in the absence of squeezing, the cavity can reduce the linewidth of the central component almost to zero, whereas the Rabi sidebands can be narrowed only to some finite value. In the presence of a two-mode cavity and a two-mode squeezed vacuum the signature of squeezing is evident in the linewidths of all spectral lines. We also establish that the narrowing of the spectral lines is very sensitive to the detuning of the driving field from the atomic resonance. Moreover, we find that the population trapping effect, predicted for the broadband squeezed vacuum case, may appear in a narrow-bandwidth case only if the input squeezed modes are perfectly matched to the cavity modes and if there is non-zero squeezing at the Rabi sidebands.
Resumo:
BACKGROUND: Recently, studies have been conducted examining the efficacy of 3% hypertonic saline solution (HS) for the treatment of traumatic brain injury; however, few studies have analyzed the effects of 3% hemorrhagic shock during hemorrhagic shock. The aim of this study was to test the potential immunomodulatory benefits of 3% hemorrhagic shock resuscitation over standard fluid resuscitation. METHODS: Wistar rats were bled to a mean arterial pressure of 35 mm Hg and then randomized into 3 groups: those treated with lactated Ringer`s solution (LR; 33 mL/kg, n = 7), 3% HS (10 mL/kg, n = 7), and 7.5% HS (4 mL/kg, n = 7). Half of the extracted blood was reinfused after fluid resuscitation. Animals that did not undergo shock served as controls (n = 5). Four hours after hemorrhagic shock, blood was collected for the evaluation of tumor necrosis factor-a and interleukin-6 by enzyme immunoassay. Lung and intestinal samples were obtained for histopathologic analysis. RESULTS: Animals in the HS groups had significantly higher mean arterial pressure than those in the LR group 1 hour after treatment. Osmolarity and sodium levels were markedly elevated in the HS groups. Tumor necrosis factor-alpha and interleukin-6 levels were similar between the control and HS groups but significantly higher in the LR group (P < .05). The lung injury score was significantly higher in the LR group compared with the 7.5% HS and 3% HS groups (5.7 +/- 0.7, 2.1 +/- 0.4, and 2.7 +/- 0.5, respectively). Intestinal injury was attenuated in the 7.5% HS and 3% HS groups compared with the LR group (2.0 +/- 0.6, 2.3 +/- 0.4, and 5.9 +/- 0.6, respectively). CONCLUSIONS: A small-volume resuscitation strategy modulates the inflammatory response and decreases end-organ damage after HS. Three percent HS provides immunomodulatory and metabolic effects similar to those observed with conventional concentrations of HS. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We report quantum chaos phenomena in the atomic gravitational cavity. We consider the reflection of cold atoms from a temporally modulated evanescent wave. In the globally chaotic regime, for small modulation, the squared energy distribution as a function of time demonstrates dynamical localization. However, for larger modulation delocalization occurs.
Resumo:
Mycosis fungoides (MF) and Sezary syndrome (SS), the major forms of cutaneous T-cell lymphoma, have unique characteristics that distinguish them from other types of non-Hodgkin`s lymphomas. Clinical trials in MF/SS have suffered from a lack of standardization in evaluation, staging, assessment, end points, and response criteria. Recently defined criteria for the diagnosis of early MF, guidelines for initial evaluation, and revised staging and classification criteria for MF and SS now offer the potential for uniform staging of patients enrolled in clinical trials for MF/SS. This article presents consensus recommendations for the general conduct of clinical trials of patients with MF/SS as well as methods for standardized assessment of potential disease manifestations in skin, lymph nodes, blood, and visceral organs, and definition of end points and response criteria. These guidelines should facilitate collaboration among investigators and collation of data from sponsor-generated or investigator-initiated clinical trials involving patients with MF or SS. J Clin Oncol 29:2598-2607. (C) 2011 by American Society of Clinical Oncology