849 resultados para restorative justice, facilitator, setting, field group, structural elements


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proteins responsible for the initiation of DNA replication are thought to be essentially unrelated in bacteria and archaea/eukaryotes. Here we show that RepA, the initiator from the Pseudomonas plasmid pPS10, and the C-terminal domain of ScOrc4p, a subunit of Saccharomyces cerevisiae (Sc) origin recognition complex (ORC), share sequence similarities. Based on biochemical and spectroscopic evidence, these similarities include common structural elements, such as a winged-helix domain and a leucine-zipper dimerization motif. We have also found that ScOrc4p, as previously described for RepA-type initiators, interacts with chaperones of the Hsp70 family both in vitro and in vivo, most probably to regulate the assembly of active ORC. In evolutionary terms, our results are compatible with the recruitment of the same protein module for initiation of DNA replication by the ancestors of present-day Gram-negative bacteria plasmids, archaea, and eukaryotes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melanoma inhibitory activity (MIA) is a 12-kDa protein that is secreted from both chondrocytes and malignant melanoma cells. MIA has been reported to have effects on cell growth and adhesion, and it may play a role in melanoma metastasis and cartilage development. We report the 1.4-Å crystal structure of human MIA, which consists of an Src homology 3 (SH3)-like domain with N- and C-terminal extensions of about 20 aa each. The N- and C-terminal extensions add additional structural elements to the SH3 domain, forming a previously undescribed fold. MIA is a representative of a recently identified family of proteins and is the first structure of a secreted protein with an SH3 subdomain. The structure also suggests a likely protein interaction site and suggests that, unlike conventional SH3 domains, MIA does not recognize polyproline helices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To bind at an enzyme’s active site, a ligand must diffuse or be transported to the enzyme’s surface, and, if the binding site is buried, the ligand must diffuse through the protein to reach it. Although the driving force for ligand binding is often ascribed to the hydrophobic effect, electrostatic interactions also influence the binding process of both charged and nonpolar ligands. First, electrostatic steering of charged substrates into enzyme active sites is discussed. This is of particular relevance for diffusion-influenced enzymes. By comparing the results of Brownian dynamics simulations and electrostatic potential similarity analysis for triose-phosphate isomerases, superoxide dismutases, and β-lactamases from different species, we identify the conserved features responsible for the electrostatic substrate-steering fields. The conserved potentials are localized at the active sites and are the primary determinants of the bimolecular association rates. Then we focus on a more subtle effect, which we will refer to as “ionic tethering.” We explore, by means of molecular and Brownian dynamics simulations and electrostatic continuum calculations, how salt links can act as tethers between structural elements of an enzyme that undergo conformational change upon substrate binding, and thereby regulate or modulate substrate binding. This is illustrated for the lipase and cytochrome P450 enzymes. Ionic tethering can provide a control mechanism for substrate binding that is sensitive to the electrostatic properties of the enzyme’s surroundings even when the substrate is nonpolar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological membranes contain an extraordinary diversity of lipids. Phospholipids function as major structural elements of cellular membranes, and analysis of changes in the highly heterogeneous mixtures of lipids found in eukaryotic cells is central to understanding the complex functions in which lipids participate. Phospholipase-catalyzed hydrolysis of phospholipids often follows cell surface receptor activation. Recently, we demonstrated that granule fusion is initiated by addition of exogenous, nonmammalian phospholipases to permeabilized mast cells. To pursue this finding, we use positive and negative mode Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) to measure changes in the glycerophospholipid composition of total lipid extracts of intact and permeabilized RBL-2H3 (mucosal mast cell line) cells. The low energy of the electrospray ionization results in efficient production of molecular ions of phospholipids uncomplicated by further fragmentation, and changes were observed that eluded conventional detection methods. From these analyses we have spectrally resolved more than 130 glycerophospholipids and determined changes initiated by introduction of exogenous phospholipase C, phospholipase D, or phospholipase A2. These exogenous phospholipases have a preference for phosphatidylcholine with long polyunsaturated alkyl chains as substrates and, when added to permeabilized mast cells, produce multiple species of mono- and polyunsaturated diacylglycerols, phosphatidic acids, and lysophosphatidylcholines, respectively. The patterns of changes of these lipids provide an extraordinarily rich source of data for evaluating the effects of specific lipid species generated during cellular processes, such as exocytosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alternative models of cell mechanics depict the living cell as a simple mechanical continuum, porous filament gel, tensed cortical membrane, or tensegrity network that maintains a stabilizing prestress through incorporation of discrete structural elements that bear compression. Real-time microscopic analysis of cells containing GFP-labeled microtubules and associated mitochondria revealed that living cells behave like discrete structures composed of an interconnected network of actin microfilaments and microtubules when mechanical stresses are applied to cell surface integrin receptors. Quantitation of cell tractional forces and cellular prestress by using traction force microscopy confirmed that microtubules bear compression and are responsible for a significant portion of the cytoskeletal prestress that determines cell shape stability under conditions in which myosin light chain phosphorylation and intracellular calcium remained unchanged. Quantitative measurements of both static and dynamic mechanical behaviors in cells also were consistent with specific a priori predictions of the tensegrity model. These findings suggest that tensegrity represents a unified model of cell mechanics that may help to explain how mechanical behaviors emerge through collective interactions among different cytoskeletal filaments and extracellular adhesions in living cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleosomes, the basic structural elements of chromosomes, consist of 146 bp of DNA coiled around an octamer of histone proteins, and their presence can strongly influence gene expression. Considerations of the anisotropic flexibility of nucleotide triplets containing 3 cytosines or guanines suggested that a [5'(G/C)3 NN3']n motif might resist wrapping around a histone octamer. To test this, DNAs were constructed containing a 5'-CCGNN-3' pentanucleotide repeat with the Ns varied. Using in vitro nucleosome reconstitution and electron microscopy, a plasmid with 48 contiguous CCGNN repeats strongly excluded nucleosomes in the repeat region. Competitive reconstitution gel retardation experiments using DNA fragments containing 12, 24, or 48 CCGNN repeats showed that the propensity to exclude nucleosomes increased with the length of the repeat. Analysis showed that a 268-bp DNA containing a (CCGNN)48 block is 4.9 +/- 0.6-fold less efficient in nucleosome assembly than a similar length pUC19 fragment and approximately 78-fold less efficient than a similar length (CTG)n sequence, based on results from previous studies. Computer searches against the GenBank database for matches with a [(G/C)3NN]48 sequence revealed numerous examples that frequently were present in the control regions of "TATA-less" genes, including the human ETS-2 and human dihydrofolate reductase genes. In both cases the (G/C)3NN repeat, present in the promoter region, co-maps with loci previously shown to be nuclease hypersensitive sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Local protein structure prediction efforts have consistently failed to exceed approximately 70% accuracy. We characterize the degeneracy of the mapping from local sequence to local structure responsible for this failure by investigating the extent to which similar sequence segments found in different proteins adopt similar three-dimensional structures. Sequence segments 3-15 residues in length from 154 different protein families are partitioned into neighborhoods containing segments with similar sequences using cluster analysis. The consistency of the sequence-to-structure mapping is assessed by comparing the local structures adopted by sequence segments in the same neighborhood in proteins of known structure. In the 154 families, 45% and 28% of the positions occur in neighborhoods in which one and two local structures predominate, respectively. The sequence patterns that characterize the neighborhoods in the first class probably include virtually all of the short sequence motifs in proteins that consistently occur in a particular local structure. These patterns, many of which occur in transitions between secondary structural elements, are an interesting combination of previously studied and novel motifs. The identification of sequence patterns that consistently occur in one or a small number of local structures in proteins should contribute to the prediction of protein structure from sequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apolipoprotein A-1 (apoA-1) in complex with high-density lipoprotein is critically involved in the transport and metabolism of cholesterol and in the pathogenesis of atherosclerosis. We reexamined the thermal unfolding of lipid-free apoA-1 in low-salt solution at pH approximately 7, by using differential scanning calorimetry and circular dichroism. At protein concentrations <5 mg/ml, thermal unfolding of apoA-1 is resolved as an extended peak (25 degrees C-90 degrees C) that can be largely accounted for by a single reversible non-two-state transition with midpoint Tm 57 +/- 1 degree C, calorimetric enthalpy deltaH(Tm)= 200 +/- 20 kcal/mol (1 kcal = 4.18 kJ), van't Hoff enthalpy deltaHv(Tm) approximately 32.5 kcal/mol, and cooperativity deltaHv(Tm)/deltaH(Tm) approximately 0.16. The enthalpy deltaH(Tm) can be accounted for by melting of the alpha-helical structure that is inferred by CD to constitute approximately 60% of apoA-1 amino acids. Farand near-UV CD spectra reveal noncoincident melting of the secondary and tertiary structural elements and indicate a well-defined secondary structure but a largely melted tertiary structure for apoA-1 at approximately 37 degrees C and pH 7. This suggests a molten globular-like state for lipid-free apoA-1 under near-physiological conditions. Our results suggest that in vivo lipid binding by apoA-1 may be mediated via the molten globular apolipoprotein state in plasma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have prepared a family of peptide fragments of the 64-residue chymotrypsin inhibitor 2, corresponding to its progressive elongation from the N terminus. The growing polypeptide chain has little tendency to form stable structure until it is largely synthesized, and what structures are formed are nonnative and lack, in particular, the native secondary structural elements of alpha-helix and beta-sheet. These elements then develop as sufficient tertiary interactions are made in the nearly full-length chain. The growth of structure in the small module is highly cooperative and does not result from the hierarchical accretion of substructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho trata do desenvolvimento de um sistema computacional, para a geração de dados e apresentação de resultados, específico para as estruturas de edifícios. As rotinas desenvolvidas devem trabalhar em conjunto com um sistema computacional para análise de estruturas com base no Método dos Elementos Finitos, contemplando tanto as estruturas de pavimentos; com a utilização de elementos de barra, placa/casca e molas; como as estruturas de contraventamento; com a utilização de elementos de barra tridimensional e recursos especiais como nó mestre e trechos rígidos. A linguagem computacional adotada para a elaboração das rotinas mencionadas é o Object Pascal do DELPHI, um ambiente de programação visual estruturado na programação orientada a objetos do Object Pascal. Essa escolha tem como objetivo, conseguir um sistema computacional onde alterações e adições de funções possam ser realizadas com facilidade, sem que todo o conjunto de programas precise ser analisado e modificado. Por fim, o programa deve servir como um verdadeiro ambiente para análise de estruturas de edifícios, controlando através de uma interface amigável com o usuário uma série de outros programas já desenvolvidos em FORTRAN, como por exemplo o dimensionamento de vigas, pilares, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the “Variation Guggenheim 3: Mirador de la palmera” project, situated in Daya Vieja (Alicante-Spain). This structure is inspired by the Guggenheim museum of New York and is designed to protect a land-mark palm-tree from wind loads. This six – trunk palm tree was declared monument by the Valencian government in 2012. The structure that now protect it appears to fly around de palm tree creating a helicoidally skywalk made of steel, while retrofitting the lateral trunks of the tree to protect them from collapse. An 18 m. long straight beam starts on the top of this helix, and stretches towards a lookout point that offers a view of the whole village and its surroundings. The reduction of the visual impact of the structure on the tree was a major aim for the project design. The structural elements are as slender as possible to avoid the visual obstruction of tree. They are painted white, while the walkway steel corrugated plate is painted green in order to highlight its neat shape among the blur created by the apparent mess of bars of the supporting structure. The two main piles of this pedestrian bridge were designed in steel and geometrically resemble trees. A Ground Penetrating Radar analysis was performed to detect the palm root location and to decide the best foundation system. Slender cast in-situ steel-concrete micropiles along with a concrete pile-cap, raised some centimeters above the ground level, were used to reduce the damage to the roots. The projected pile-cap is a slender, continuous, circular ring; which geometry resembles a concrete bench. This structure has been a finalist in the Architecture Awards for the 2010-2014 best construction projects, held by the Diputación de Alicante.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medieval fortified granaries known as “agadirs” are very common in southern Morocco, being catalogued as world cultural heritage by United Nations. These Berber buildings (made of stones and tree trunks) usually located on rocky promontories, constitute historical testimonials related to the origin of Morocco, and, as tourist attractions, have a positive impact on the local economy. The sustainability of these ancient monuments requires geological-risk evaluations of the massif stability under the agadir with the proposal of stabilization measures, and an architectonic analysis with appropriate maintenance of the structural elements. An interdisciplinary study including climate, seismicity, hydrology, geology, geomorphology, geotechnical surveys of the massif, and diagnosis of the degradation of structural elements have been performed on the Amtoudi Agadir, selected as a case study. The main findings from this study are that the prevalent rocks used for construction (coming from the underlying substratum) are good-quality arkosic sandstones; the SW cliffs under the agadir are unstable under water saturation; some masonry walls are too thin and lack interlocking stones and mortar; and failures in the beams (due to flexure, fracture, and exhaustion in the resistance due to insect attacks or plant roots) are common. The basic risk assessment of ancient buildings of cultural heritage and their geologic substratum are needed especially in undeveloped areas with limited capacity to implement durable conservation policies. Therefore, recommendations have been provided to ensure the stability and maintenance of this important archaeological site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All the structures designed by engineers are vulnerable to natural disasters including floods and earthquakes. The energy released during strong ground motions should be dissipated by structural elements. Before 1990’s, this energy was expected to be dissipated through the beams and columns which at the same time were a part of gravity-load-resisting system. However, the main disadvantage of this idea was that gravity-resisting-frame was not repairable. Hence, during 1990’s, the idea of designing passive energy dissipation systems, including dampers, emerged. At the beginning, main problem was lack of guidelines for passive energy dissipation systems. Although till 2000 many guidelines and procedures where published, yet most of them were based on complicated analysis which was not so convenient for engineers and practitioners. In order to solve this problem recently some alternative design methods are proposed including 1. Lopez Garcia (2001) simple procedure for optimal damper configuration in MDOF structures 2. Christopoulos and Filiatrault (2006) trial and error procedure 3. Silvestri et al. (2010) Five-Step Method. 4. Palermo et al. (2015) Direct Five-Step Method. 5. Palermo et al. (2016) Simplified Equivalent Static Analysis (ESA). In this study, effectiveness and differences between last three alternative methods have been evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclotides are a family of plant proteins that have the unusual combination of head-to-tail backbone cyclization and a cystine knot motif. They are exceptionally stable and show resistance to most chemical, physical, and enzymatic treatments. The structure of tricyclon A, a previously unreported cyclotide, is described here. In this structure, a loop that is disordered in other cyclotides forms a beta sheet that protrudes from the globular core. This study indicates that the cyclotide fold is amenable to the introduction of a range of structural elements without affecting the cystine knot core of the protein, which is essential for the stability of the cyclotides. Tricyclon A does not possess a hydrophobic patch, typical of other cyclotides, and has minimal hemolytic activity, making it suitable for pharmaceutical applications. The 22 kDa precursor protein of tricyclon A was identified and provides clues to the processing of these fascinating miniproteins.