864 resultados para real genetic algorithm


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation introduces an approach to generate tests to test fail-safe behavior for web applications. We apply the approach to a commercial web application. We build models for both behavioral and mitigation requirements. We create mitigation tests from an existing functional black box test suite by determining failure type and points of failure in the test suite and weaving required mitigation based on weaving rules to generate a test suite that tests proper mitigation of failures. A genetic algorithm (GA) is used to determine points of failure and type of failure that needs to be tested. Mitigation test paths are woven into the behavioral test at the point of failure based on failure specific weaving rules. A simulator was developed to evaluate choice of parameters for the genetic algorithm. We showed how to tune the fitness function and performed tuning experiments for GA to determine what values to use for exploration weight and prospecting weight. We found that higher defect densities make prospecting and mining more successful, while lower mitigation defect densities need more exploration. We compare efficiency and effectiveness of the approach. First, the GA approach is compared to random selection. The results show that the GA performance was better than random selection and that the approach was robust when the search space increased. Second, we compare the GA against four coverage criteria. The results of comparison show that test requirements generated by a genetic algorithm (GA) are more efficient than three of the four coverage criteria for large search spaces. They are equally effective. For small search spaces, the genetic algorithm is less effective than three of the four coverage criteria. The fourth coverage criteria is too weak and unable to find all defects in almost all cases. We also present a large case study of a mortgage system at one of our industrial partners and show how we formalize the approach. We evaluate the use of a GA to create test requirements. The evaluation includes choice of initial population, multiplicity of runs and a discussion of the cost of evaluating fitness. Finally, we build a selective regression testing approach based on types of changes (add, delete, or modify) that could occur in the behavioral model, the fault model, the mitigation models, the weaving rules, and the state-event matrix. We provide a systematic method by showing the formalization steps for each type of change to the various models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hardware/Software partitioning (HSP) is a key task for embedded system co-design. The main goal of this task is to decide which components of an application are to be executed in a general purpose processor (software) and which ones, on a specific hardware, taking into account a set of restrictions expressed by metrics. In last years, several approaches have been proposed for solving the HSP problem, directed by metaheuristic algorithms. However, due to diversity of models and metrics used, the choice of the best suited algorithm is an open problem yet. This article presents the results of applying a fuzzy approach to the HSP problem. This approach is more flexible than many others due to the fact that it is possible to accept quite good solutions or to reject other ones which do not seem good. In this work we compare six metaheuristic algorithms: Random Search, Tabu Search, Simulated Annealing, Hill Climbing, Genetic Algorithm and Evolutionary Strategy. The presented model is aimed to simultaneously minimize the hardware area and the execution time. The obtained results show that Restart Hill Climbing is the best performing algorithm in most cases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El particionado hardware/software es una tarea fundamental en el co-diseño de sistemas embebidos. En ella se decide, teniendo en cuenta las métricas de diseño, qué componentes se ejecutarán en un procesador de propósito general (software) y cuáles en un hardware específico. En los últimos años se han propuesto diversas soluciones al problema del particionado dirigidas por algoritmos metaheurísticos. Sin embargo, debido a la diversidad de modelos y métricas utilizadas, la elección del algoritmo más apropiado sigue siendo un problema abierto. En este trabajo se presenta una comparación de seis algoritmos metaheurísticos: Búsqueda aleatoria (Random search), Búsqueda tabú (Tabu search), Recocido simulado (Simulated annealing), Escalador de colinas estocástico (Stochastic hill climbing), Algoritmo genético (Genetic algorithm) y Estrategia evolutiva (Evolution strategy). El modelo utilizado en la comparación está dirigido a minimizar el área ocupada y el tiempo de ejecución, las restricciones del modelo son consideradas como penalizaciones para incluir en el espacio de búsqueda otras soluciones. Los resultados muestran que los algoritmos Escalador de colinas estocástico y Estrategia evolutiva son los que mejores resultados obtienen en general, seguidos por el Algoritmo genético.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tuning compilations is the process of adjusting the values of a compiler options to improve some features of the final application. In this paper, a strategy based on the use of a genetic algorithm and a multi-objective scheme is proposed to deal with this task. Unlike previous works, we try to take advantage of the knowledge of this domain to provide a problem-specific genetic operation that improves both the speed of convergence and the quality of the results. The evaluation of the strategy is carried out by means of a case of study aimed to improve the performance of the well-known web server Apache. Experimental results show that a 7.5% of overall improvement can be achieved. Furthermore, the adaptive approach has shown an ability to markedly speed-up the convergence of the original strategy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The design of fault tolerant systems is gaining importance in large domains of embedded applications where design constrains are as important as reliability. New software techniques, based on selective application of redundancy, have shown remarkable fault coverage with reduced costs and overheads. However, the large number of different solutions provided by these techniques, and the costly process to assess their reliability, make the design space exploration a very difficult and time-consuming task. This paper proposes the integration of a multi-objective optimization tool with a software hardening environment to perform an automatic design space exploration in the search for the best trade-offs between reliability, cost, and performance. The first tool is commanded by a genetic algorithm which can simultaneously fulfill many design goals thanks to the use of the NSGA-II multi-objective algorithm. The second is a compiler-based infrastructure that automatically produces selective protected (hardened) versions of the software and generates accurate overhead reports and fault coverage estimations. The advantages of our proposal are illustrated by means of a complex and detailed case study involving a typical embedded application, the AES (Advanced Encryption Standard).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optimized structure of the educational program consisting of a set of the interconnected educational objects is offered by means of problem solution of optimum partition of the acyclic weighed graph. The condition of acyclicity preservation for subgraphs is formulated and the quantitative assessment of decision options is executed. The original algorithm of search of quasioptimum partition using the genetic algorithm scheme with coding chromosomes by permutation is offered. Object-oriented realization of algorithm in language C++ is described and results of numerical experiments are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Warranty is an important element of marketing new products. The servicing of warranty results in additional costs to the manufacturer. Warranty logistics deals with various issues relating to the servicing of warranty. Proper management of warranty logistics is needed not only to reduce the warranty servicing cost but also to ensure customer satisfaction as customer dissatisfaction has a negative impact on sales and revenue. Unfortunately, warranty logistics has received very little attention. The paper links the literature on warranty and on logistics and then discusses the different issues in warranty logistics. It highlights the challenges and identifies some research topics of potential interest to operational researchers. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Organic microcavity light emitting diodes typically exhibit a blue shift of the emitting wavelength with increasing viewing angle. While the wavelength shift can be reduced with the appropriate choice of organic materials and metal mirrors, for further reduction of the emission wavelength shift it is necessary to consider a mirror whose phase shift can partly compensate the effect of the change of optical path within the cavity. In this work, we used a genetic algorithm (GA) to design an asymmetric Bragg mirror in order to minimize the emission wavelength shift with viewing angle. Based on simulation results, the use of asymmetric Bragg mirrors represents a promising way to reduce the emission wavelength shift. Detailed comparison between GA optimized and conventional Bragg mirrors in terms of resonant wavelength dependence on the viewing angle, spectral narrowing, and brightness enhancement is given. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background. The factors behind the reemergence of severe, invasive group A streptococcal (GAS) diseases are unclear, but it could be caused by altered genetic endowment in these organisms. However, data from previous studies assessing the association between single genetic factors and invasive disease are often conflicting, suggesting that other, as-yet unidentified factors are necessary for the development of this class of disease. Methods. In this study, we used a targeted GAS virulence microarray containing 226 GAS genes to determine the virulence gene repertoires of 68 GAS isolates (42 associated with invasive disease and 28 associated with noninvasive disease) collected in a defined geographic location during a contiguous time period. We then employed 3 advanced machine learning methods (genetic algorithm neural network, support vector machines, and classification trees) to identify genes with an increased association with invasive disease. Results. Virulence gene profiles of individual GAS isolates varied extensively among these geographically and temporally related strains. Using genetic algorithm neural network analysis, we identified 3 genes with a marginal overrepresentation in invasive disease isolates. Significantly, 2 of these genes, ssa and mf4, encoded superantigens but were only present in a restricted set of GAS M-types. The third gene, spa, was found in variable distributions in all M-types in the study. Conclusions. Our comprehensive analysis of GAS virulence profiles provides strong evidence for the incongruent relationships among any of the 226 genes represented on the array and the overall propensity of GAS to cause invasive disease, underscoring the pathogenic complexity of these diseases, as well as the importance of multiple bacteria and/ or host factors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The GuRm is a 1.2m tall, 23 degree of freedom humanoid consuucted at the University of Queensland for research into humanoid robotics. The key challenge being addressed by the GuRw projcct is the development of appropriate learning strategies for control and coodinadon of the robot’s many joints. The development of learning strategies is Seen as a way to sidestep the inherent intricacy of modeling a multi-DOP biped robot. This paper outlines the approach taken to generate an appmpria*e control scheme for the joinis of the GuRoo. The paper demonsrrates the determination of local feedback control parameters using a genetic algorithm. The feedback loop is then augmented by a predictive modulator that learns a form of feed-fonward control to overcome the irregular loads experienced at each joint during the gait cycle. The predictive modulator is based on thc CMAC architecture. Results from tats on the GuRoo platform show that both systems provide improvements in stability and tracking of joint control.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we demonstrate that it is possible to gradually improve the performance of support vector machine (SVM) classifiers by using a genetic algorithm to select a sequence of training subsets from the available data. Performance improvement is possible because the SVM solution generally lies some distance away from the Bayes optimal in the space of learning parameters. We illustrate performance improvements on a number of benchmark data sets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multi-agent algorithms inspired by the division of labour in social insects are applied to a problem of distributed mail retrieval in which agents must visit mail producing cities and choose between mail types under certain constraints.The efficiency (i.e. the average amount of mail retrieved per time step), and the flexibility (i.e. the capability of the agents to react to changes in the environment) are investigated both in static and dynamic environments. New rules for mail selection and specialisation are introduced and are shown to exhibit improved efficiency and flexibility compared to existing ones. We employ a genetic algorithm which allows the various rules to evolve and compete. Apart from obtaining optimised parameters for the various rules for any environment, we also observe extinction and speciation. From a more theoretical point of view, in order to avoid finite size effects, most results are obtained for large population sizes. However, we do analyse the influence of population size on the performance. Furthermore, we critically analyse the causes of efficiency loss, derive the exact dynamics of the model in the large system limit under certain conditions, derive theoretical upper bounds for the efficiency, and compare these with the experimental results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the formation and structural properties of co-crystals containing gemfibrozil and hydroxy derivatives of t-butylamine H2NC(CH3)3-n(CH2OH)n, with n=0, 1, 2 and 3. In each case, a 1:1 co-crystal is formed, with transfer of a proton from the carboxylic acid group of gemfibrozil to the amino group of the t-butylamine derivative. All of the co-crystal materials prepared are polycrystalline powders, and do not contain single crystals of suitable size and/or quality for single crystal X-ray diffraction studies. Structure determination of these materials has been carried out directly from powder X-ray diffraction data, using the direct-space Genetic Algorithm technique for structure solution followed by Rietveld refinement. The structural chemistry of this series of co-crystal materials reveals well-defined structural trends within the first three members of the family (n=0, 1, 2), but significantly contrasting structural properties for the member with n=3. © 2007 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Physical distribution plays an imporant role in contemporary logistics management. Both satisfaction level of of customer and competitiveness of company can be enhanced if the distribution problem is solved optimally. The multi-depot vehicle routing problem (MDVRP) belongs to a practical logistics distribution problem, which consists of three critical issues: customer assignment, customer routing, and vehicle sequencing. According to the literatures, the solution approaches for the MDVRP are not satisfactory because some unrealistic assumptions were made on the first sub-problem of the MDVRP, ot the customer assignment problem. To refine the approaches, the focus of this paper is confined to this problem only. This paper formulates the customer assignment problem as a minimax-type integer linear programming model with the objective of minimizing the cycle time of the depots where setup times are explicitly considered. Since the model is proven to be MP-complete, a genetic algorithm is developed for solving the problem. The efficiency and effectiveness of the genetic algorithm are illustrated by a numerical example.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to investigate the optimization for a placement machine in printed circuit board (PCB) assembly when family setup strategy is adopted. Design/methodology/approach – A complete mathematical model is developed for the integrated problem to optimize feeder arrangement and component placement sequences so as to minimize the makespan for a set of PCB batches. Owing to the complexity of the problem, a specific genetic algorithm (GA) is proposed. Findings – The established model is able to find the minimal makespan for a set of PCB batches through determining the feeder arrangement and placement sequences. However, exact solutions to the problem are not practical due to the complexity. Experimental tests show that the proposed GA can solve the problem both effectively and efficiently. Research limitations/implications – When a placement machine is set up for production of a set of PCB batches, the feeder arrangement of the machine together with the component placement sequencing for each PCB type should be solved simultaneously so as to minimize the overall makespan. Practical implications – The paper investigates the optimization for PCB assembly with family setup strategy, which is adopted by many PCB manufacturers for reducing both setup costs and human errors. Originality/value – The paper investigates the feeder arrangement and placement sequencing problems when family setup strategy is adopted, which has not been studied in the literature.