897 resultados para range shifts
Resumo:
Systematic climate shifts have been linked to multidecadal variability in observed sea surface temperatures in the North Atlantic Ocean1. These links are extensive, influencing a range of climate processes such as hurricane activity2 and African Sahel3, 4, 5 and Amazonian5 droughts. The variability is distinct from historical global-mean temperature changes and is commonly attributed to natural ocean oscillations6, 7, 8, 9, 10. A number of studies have provided evidence that aerosols can influence long-term changes in sea surface temperatures11, 12, but climate models have so far failed to reproduce these interactions6, 9 and the role of aerosols in decadal variability remains unclear. Here we use a state-of-the-art Earth system climate model to show that aerosol emissions and periods of volcanic activity explain 76 per cent of the simulated multidecadal variance in detrended 1860–2005 North Atlantic sea surface temperatures. After 1950, simulated variability is within observational estimates; our estimates for 1910–1940 capture twice the warming of previous generation models but do not explain the entire observed trend. Other processes, such as ocean circulation, may also have contributed to variability in the early twentieth century. Mechanistically, we find that inclusion of aerosol–cloud microphysical effects, which were included in few previous multimodel ensembles, dominates the magnitude (80 per cent) and the spatial pattern of the total surface aerosol forcing in the North Atlantic. Our findings suggest that anthropogenic aerosol emissions influenced a range of societally important historical climate events such as peaks in hurricane activity and Sahel drought. Decadal-scale model predictions of regional Atlantic climate will probably be improved by incorporating aerosol–cloud microphysical interactions and estimates of future concentrations of aerosols, emissions of which are directly addressable by policy actions.
Resumo:
At the end of the 20th century, we can look back on a spectacular development of numerical weather prediction, which has, practically uninterrupted, been going on since the middle of the century. High-resolution predictions for more than a week ahead for any part of the globe are now routinely produced and anyone with an Internet connection can access many of these forecasts for anywhere in the world. Extended predictions for several seasons ahead are also being done — the latest El Niño event in 1997/1998 is an example of such a successful prediction. The great achievement is due to a number of factors including the progress in computational technology and the establishment of global observing systems, combined with a systematic research program with an overall strategy towards building comprehensive prediction systems for climate and weather. In this article, I will discuss the different evolutionary steps in this development and the way new scientific ideas have contributed to efficiently explore the computing power and in using observations from new types of observing systems. Weather prediction is not an exact science due to unavoidable errors in initial data and in the models. To quantify the reliability of a forecast is therefore essential and probably more so the longer the forecasts are. Ensemble prediction is thus a new and important concept in weather and climate prediction, which I believe will become a routine aspect of weather prediction in the future. The limit between weather and climate prediction is becoming more and more diffuse and in the final part of this article I will outline the way I think development may proceed in the future.
Resumo:
Total ozone trends are typically studied using linear regression models that assume a first-order autoregression of the residuals [so-called AR(1) models]. We consider total ozone time series over 60°S–60°N from 1979 to 2005 and show that most latitude bands exhibit long-range correlated (LRC) behavior, meaning that ozone autocorrelation functions decay by a power law rather than exponentially as in AR(1). At such latitudes the uncertainties of total ozone trends are greater than those obtained from AR(1) models and the expected time required to detect ozone recovery correspondingly longer. We find no evidence of LRC behavior in southern middle-and high-subpolar latitudes (45°–60°S), where the long-term ozone decline attributable to anthropogenic chlorine is the greatest. We thus confirm an earlier prediction based on an AR(1) analysis that this region (especially the highest latitudes, and especially the South Atlantic) is the optimal location for the detection of ozone recovery, with a statistically significant ozone increase attributable to chlorine likely to be detectable by the end of the next decade. In northern middle and high latitudes, on the other hand, there is clear evidence of LRC behavior. This increases the uncertainties on the long-term trend attributable to anthropogenic chlorine by about a factor of 1.5 and lengthens the expected time to detect ozone recovery by a similar amount (from ∼2030 to ∼2045). If the long-term changes in ozone are instead fit by a piecewise-linear trend rather than by stratospheric chlorine loading, then the strong decrease of northern middle- and high-latitude ozone during the first half of the 1990s and its subsequent increase in the second half of the 1990s projects more strongly on the trend and makes a smaller contribution to the noise. This both increases the trend and weakens the LRC behavior at these latitudes, to the extent that ozone recovery (according to this model, and in the sense of a statistically significant ozone increase) is already on the verge of being detected. The implications of this rather controversial interpretation are discussed.
Resumo:
Long-range global climate forecasts were made by use of a model for predicting a tropical Pacific sea-surface temperature (SST) in tandem with an atmospheric general circulation model. The SST is predicted first at long lead times into the future. These ocean forecasts are then used to force the atmospheric model and so produce climate forecasts at lead times of the SST forecasts. Prediction of seven large climatic events of the 1970s to 1990s by this technique are in good agreement with observations over many regions of the globe.
Resumo:
The first ECMWF Seminar in 1975 (ECMWF, 1975) considered the scientific foundation of medium range weather forecasts. It may be of interest as a part of this lecture, to review some of the ideas and opinions expressed during this seminar.