851 resultados para protein structure and folding
Resumo:
it has been established that triazinyl bipyridines (hemi-BTPs) and bis-triazinyl pyridines (BTPs), ligands which are currently being investigated as possible ligands for the separation of actinides from lanthanides in nuclear waste, are able to form homoleptic complexes with first row transition metals such as cobalt(IT), copper(II), iron(II), manganese(II), nickel(II) and zinc(II). The metal complexes exhibit six-co-ordinate octahedral structures and redox states largely analogous to those of the related terpyridine complexes. The reactivity of the different redox states of cobalt bis-hemi-BTP complex in aqueous environments has been studied with two-phase electrochemistry by immobilisation of the essentially water-insoluble metal complexes on graphite electrodes and the immersion of this modified electrode in an aqueous electrolyte. It was found that redox potentials for the metal-centred reactions were pH-independent whereas the potentials for the ligand-centred reactions were strongly pH-dependent. The reductive degradation of these complexes has been investigated by computational methods. Solvent extraction experiments have been carried out for a range of metals and these show that cobalt(II) and nickel(II) as well as palladium(II), cadmium(II) and lead(II) were all extracted with the ligands 1e and 2c with higher distribution ratios that was observed for americium(III) under the same conditions. The implications of this result for the use of these ligands to separate actinides from nuclear waste are discussed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In the title family, the ONO donor ligands are the acetylhydrazones of salicylaidehyde (H2L1) and 2-hydroxyacetophenone (H2L2) (general abbreviation, H2L). The reaction of bis(acetylacetonato)oxovanadium(IV) with a mixture of tridentate H2L and a bidentate NN donor [e.g., 2,2'-bipyridine(bpy) or 1,10-phenanthroline(phen), hereafter B] ligands in equimolar ratio afforded the tetravalent complexes of the type [(VO)-O-IV(L)(B)]; complexes (1)-(4) whereas, if B is replaced by 8-hydroxyquinoline(Hhq) (which is a bidentate ON donor ligand), the above reaction mixture yielded the pentavalent complexes of the type [(VO)-O-V(L)(hq)]; complexes (5) and (6). Aerial oxygen is most likely the oxidant (for the oxidation of V-IV -> V-V) in the synthesis of pentavalent complexes (5) and (6). [(VO)-O-IV(L)(B)] complexes are one electron paramagnetic and display axial EPR spectra, while the [(VO)-O-V(L)(hq)] complexes are diamagnetic. The X-ray structure of [(VO)-O-V(L-2)(hq)] (6) indicates that H2L2 ligand is bonded with the vanadium meridionally in a tridentate dinegative fashion through its phenolic-O, enolic-O and imine-N atoms. The general bond length order is: oxo < phenolato < enolato. The V-O (enolato) bond is longer than V-O (phenolato) bond by similar to 0.07 angstrom and is identical with V-O (carboxylate) bond. H-1 NMR spectrum of (6) in CDCl3 solution indicates that the binding nature in the solid state is also retained in solution. Complexes (1)(4) display two ligand-field transitions in the visible region near 820 and 480 nm in DMF solution and exhibit irreversible oxidation peak near +0.60 V versus SCE in DMSO solution, while complexes (5) and (6) exhibit only LMCT band near 535 nm and display quasi-reversible one electron reduction peak near -0.10 V versus SCE in CH2Cl2 solution. The VO3+-VO2+ E-1/2 values shift considerably to more negative values when neutral NN donor is replaced by anionic ON donor species and it also provides better VO3+ binding via phenolato oxygen. For a given bidentate ligand, E-1/2 increases in the order: (L-2)(2-) < (L-1)(2-). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
By combining the results of both x-ray diffraction and neutron total-scattering experiments, we show that Ni(CN)(2) exhibits long-range structural order only in two dimensions, with no true periodicity perpendicular to its gridlike layers. Reverse Monte Carlo analysis gives an experimental distinction between M-C and M-N bond lengths in a homometallic cyanide framework and identifies the vibrational modes responsible for anomalous positive and negative thermal expansion in the title compound.
Resumo:
Reaction of 1,3-diaryltriazenes (abbreviated in general as HL-R, where R stands for the para-substituent in the aryl fragment and H stands for the dissociable hydrogen atom, R = OCH3, CH3, H, Cl, NO2) with [Rh(PPh3)(2)(CO)Cl] in ethanol in the presence of NEt3 produces a series of tris-diaryltriazenide complexes of rhodium of type [Rh(L-R)(3)], where the triazenes are coordinated to rhodium as monoanionic, bidentate N,N-donors. Structure of the [Rh(L-OCH3)(3)] complex has been determined by X-ray crystallography. The complexes are diamagnetic, and show characteristic H-1 NMR signals and intense MLCT transitions in the visible region. They also fluoresce in the visible region under ambient condition while excited at around 400 nm. Cyclic voltammetry on these complexes shows a Rh(III)-Rh(IV) oxidation (within 0.84-1.67 V vs SCE), followed by an oxidation of the coordinated tri- and azene ligand (except the R = NO2 complex). An irreversible reduction of the coordinated triazene is also observed for all the complexes below -1.03 V vs SCE.
Resumo:
Reaction of 2-(4'-R-phenylazo)-4-methylphenols (R = OCH3, CH3, H, Cl, and NO2) with [Ru(dmso)(4)Cl-2] affords a family of five ruthenium(III) complexes, containing a 2-(arylazo)phenolate ligand forming a six-membered chelate ring and a tetradentate ligand formed from two 2-(arylazo) phenols via an unusual C-C coupling linki.ng the two ortho carbons of the phenyl rings in the arylazo fragment. A similar reaction with 2-(2'-methylphenylazo)-4-methylphenol with [Ru(dmso)(4)Cl-2] has afforded a similar complex, in which one 2-(2'-methylphenylazo)-4-methylphenolate ligand is coordinated forming a six-membered chelate ring, and the other two ligands have undergone the C-C coupling reaction, and the coupled species is coordinated as a tetradentate ligand forming a five-membered N,O-chelate ring, a nine-membered N,N-chelate ring, and another five-membered chelate ring. Reaction of 2-(2',6'-dimethylphenylazo)-4-methylphenol with [Ru(dmso)(4)Cl-2] has afforded a complex in which two 2-(2',6'-dimethylphenylazo)-4-methylphenols are coordinated as bidentate N,O-donors forming five- and six-membered chelate rings, while the third one has undergone cleavage across the N=N bond, and the phenolate fragment, thus generated, remains coordinated to the metal center in the iminosemiquinonate form. Structures of four selected complexes have been determined by X-ray crystallography. The first six complexes are one-electron paramagnetic and show rhombic ESR spectra. The last complex is diamagnetic and shows characteristic H-1 NMR signals. All the complexes show intense charge-transfer transitions in the visible region and a Ru(III)-Ru(IV) oxidation on the positive side of SCE and a Ru(III)-Ru(II) reduction on the negative side.
Resumo:
Reaction of 2-(2'-carboxyphenylazo)-4-methylphenol (H2L) with [M(PPh3)(2)Cl-2] (M = Pd, Pt) affords mixed-ligand complexes of type [M(PPh3)(L)]. Structures of both the complexes have been determined by X-ray crystallography. Both the complexes are square planar, where the 2-(2'-carboxyphenylazo)-4-methylphenol is coordinated to the metal center, via dissociation of the two acidic protons, as a dianionic tridentate O,N,O-donor, and the fourth position is occupied by the triphenylphosphine. These complexes show intense MLCT transitions in the visible region.
Resumo:
Sequential crystallization of poly(L-lactide) (PLLA) followed by poly(epsilon-caprolactone) (PCL) in double crystalline PLLA-b-PCL diblock copolymers is studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS). Three samples with different compositions are studied. The sample with the shortest PLLA block (32 wt.-% PLLA) crystallizes from a homogeneous melt, the other two (with 44 and 60% PLLA) from microphase separated structures. The microphase structure of the melt is changed as PLLA crystallizes at 122 degrees C (a temperature at which the PCL block is molten) forming spherulites regardless of composition, even with 32% PLLA. SAXS indicates that a lamellar structure with a different periodicity than that obtained in the melt forms (for melt segregated samples). Where PCL is the majority block, PCL crystallization at 42 degrees C following PLLA crystallization leads to rearrangement of the lamellar structure, as observed by SAXS, possibly due to local melting at the interphases between domains. POM results showed that PCL crystallizes within previously formed PLLA spherulites. WAXS data indicate that the PLLA unit cell is modified by crystallization of PCL, at least for the two majority PCL samples. The PCL minority sample did not crystallize at 42 degrees C (well below the PCL homopolymer crystallization temperature), pointing to the influence of pre-crystallization of PLLA on PCL crystallization, although it did crystallize at lower temperature. Crystallization kinetics were examined by DSC and WAXS, with good agreement in general. The crystallization rate of PLLA decreased with increase in PCL content in the copolymers. The crystallization rate of PCL decreased with increasing PLLA content. The Avrami exponents were in general depressed for both components in the block copolymers compared to the parent homopolymers. Polarized optical micrographs during isothermal crystalli zation of (a) homo-PLLA, (b) homo-PCL, (c) and (d) block copolymer after 30 min at 122 degrees C and after 15 min at 42 degrees C.
Resumo:
Neuropathic pain may arise following peripheral nerve injury though the molecular mechanisms associated with this are unclear. We used proteomic profiling to examine changes in protein expression associated with the formation of hyper-excitable neuromas derived from rodent saphenous nerves. A two-dimensional difference gel electrophoresis ( 2D-DIGE) profiling strategy was employed to examine protein expression changes between developing neuromas and normal nerves in whole tissue lysates. We found around 200 proteins which displayed a > 1.75-fold change in expression between neuroma and normal nerve and identified 55 of these proteins using mass spectrometry. We also used immunoblotting to examine the expression of low-abundance ion channels Nav1.3, Nav1.8 and calcium channel alpha 2 delta-1 subunit in this model, since they have previously been implicated in neuronal hyperexcitability associated with neuropathic pain. Finally, S(35)methionine in vitro labelling of neuroma and control samples was used to demonstrate local protein synthesis of neuron-specific genes. A number of cytoskeletal proteins, enzymes and proteins associated with oxidative stress were up-regulated in neuromas, whilst overall levels of voltage-gated ion channel proteins were unaffected. We conclude that altered mRNA levels reported in the somata of damaged DRG neurons do not necessarily reflect levels of altered proteins in hyper-excitable damaged nerve endings. An altered repertoire of protein expression, local protein synthesis and topological re-arrangements of ion channels may all play important roles in neuroma hyper-excitability.
Resumo:
Synthesis, structural characterization, and magnetic properties of a new cyano-bridged one-dimensional iron (III)-gadolinium (III) compound, trans-[Gd(o-phen)(2)(H2O)(2)(mu-CN)(2)Fe(CN)(4)], - 2no-phen (o-phen = 1,10-phenanthroline), have been described. The compound crystallizes in the triclinic P (1) over bar space group with the following unit cell parameters: a = 10.538(14) angstrom, b = 12.004(14) angstrom, c = 20.61(2) angstrom, alpha = 92.41(1)degrees, beta = 92.76(1)degrees, gamma = 11 2.72(1)degrees, and Z = 2. In this complex, each gadolinium (III) is coordinated to two nitrile nitrogens of the CN groups coming from two different ferricyanides, the mutually trans cyanides of each of which links another different Gd-III to create -NC-Fe(CN)(4)-CN-Gd-NC- type 1-D chain structure. The one-dimensional chains are self-assembled in two-dimensions via weak C-H center dot center dot center dot N hydrogen bonds. Both the variable-temperature (2-300 K, 0.01 T and 0.8 T) and variable-field (0-50 000 Gauss, 2 K) magnetic measurements reveal the existence of very weak interaction in this molecule. The temperature dependence of the susceptibilities has been analyzed using a model for a chain of alternating classic (7/2) and quantum (1/2) spins. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Two cobalt complexes, [Co(L-Se)(phen)]center dot CH2Cl2 (1) and [Co(L-Se)(N,N-Me(2)en)(CH3COO-)] (2) have been synthesized and characterized by elemental analyses, magnetic measurements, i.r. studies etc. Single crystal X- ray studies reveal that in complex (1) cobalt atom is in +2 oxidation state with trigonal bipyramidal geometry, while in complex (2) it is in +3 oxidation state and surrounded octahedrally. The asymmetric unit of complex (2) contains two crystallographically independent discrete molecules. Complex (1) was found to be paramagnetic with mu(eff) = 2.19 BM indicating a low spin cobalt(II) d(7) system, whereas complex (2) is found to be diamagnetic with cobalt(III) in low spin d(6) state. The kinetic studies on the reduction of (2) by ascorbic acid in 80% MeCN-20% H2O (v/v) at 25 degrees C reveal that the reaction proceeds through the rapid formation of inner-sphere adduct, probably by replacing the loosely coordinated AcO- group, followed by electron transfer in a slow step and is supported by a large Q (formation constant) value.
Resumo:
[VIVO(acac)(2)] reacts with an equimolar amount of benzoyl hydrazone of 2-hydroxyacetophenone (H2L1) or 5-chloro-2-hydroxyacetophenone (H2L2) in the presence of excess pyridine (py) in methanol to produce the quaternary [(VO)-O-V(L-1)(OCH3)(py)] (1) and [(VO)-O-V(L-2)(OCH3)(py)] (2) complexes, respectively, while under similar condition, the benzoyl hydrazones of 2-hydroxy-5-methylacetophenone (H2L3) and 2-hydroxy-5-methoxyacetophenone (H2L4) afforded only the methoxy bridged dimeric [(VO)-O-V(L-3/L-4)(OCH3)](2) complexes. The X-ray structural analysis of 1 and 2 indicates that the geometry around the metal is distorted octahedral where the three equatorial positions are occupied by the phenolate-O, enolate-O and the imine-N of the fully deprotonated hydrazone ligand in its enolic form and the fourth one by a methoxide-O atom. An oxo-O and a pyridine-N atom occupy two axial positions. Quaternary complexes exhibit one quasi-reversible one-electron reduction peak near 0.25 V versus SCE in CH2Cl2 and they decompose appreciably to the corresponding methoxy bridged dimeric complex in CDCl3 solution as indicated by their H-1 NMR spectra. These quaternary VO3+ complexes are converted to the corresponding V2O34+-complexes simply on refluxing them in acetone and to the VO2+-complexes on reaction with KOH in methanol. An equimolar amount of 8-hydroxyquinoline (Hhq) converts these quaternary complexes to the ternary [(VO)-O-V(L)(hq)] complexes in CHCl3. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Dinuclear trioxidic [{VOL}(2)mu-O] (1-4) complexes were synthesized from the reaction of [(VO)-O-IV(acac)(2)] with an equimolar amount of H2L [H2L is the general abbreviation of hydrazone ligands (H2L1-4) derived from the condensation of benzoyl hydrazine with either 2-hydroxyacetophenone or its para substituted derivatives] in acetone or CH2Cl2 or acetonitrile. These V2O3L2 complexes were also obtained from the reaction of VOSO4 with H2L in the presence of two equivalents sodium acetate in aqueous-methanolic (50% V/V) medium and also from the decomposition of [(VO)-O-IV(L)(bipy/phen)] complexes in CH2Cl2 Solution. Black monoclinic crystals of 2 and 4 with C2/c space group were obtained from the reaction of [(VO)-O-IV(acac)(2)], respectively, with H2L2 and H2L4 in acetone in which the respective ligands are bonded meridionally to vanadium in their fully deprotonated enol forms. The V-O bond lengths follow the order: V-O(oxo) < V-O(oxo-bridged) < V-O(phenolate) < V-O(enolate). Complexes (1-4) are diamagnetic exhibiting LMCT transition band near 380 nm in CH2Cl2 solution and they are electroactive displaying a quasi-reversible reduction peak in the 0.14-0.30 V versus SCE region. The and the reduction peak potential (E-p(c)) values show linear relationships with the Hammett constant (sigma) of the substituents in the hydrazone ligands. These dinuclear complexes are converted to the corresponding mononuclear cis dioxo complexes K(H2O)(+)[(VO2)-O-V(L)](-) (5-8) and mixed-ligand [(VO)-O-V(L)(hq)] complexes on reaction, respectively, with two equivalents KOH in methanol and two equivalents 8-hydroxyquinoline (Hhq) in CHCl3. Ascorbic acid reduces the dioxovanadium(V) complexes reversibly under aerobic condition. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis. crystal structure and thermal study of the blue catena-(L-glutamato)-aqua copper(II) monohydrate have been reported. The compound crystallizes in P2(1)2(1)2(1) space group and consists of a polymeric three-dimensional network of copper(II) which is coordinated with the amino nitrogen and the carboxylate oxygen Of L-glutamate, the side chain carboxylate oxygen of a neighbouring L-glutamate and the oxygen of a water molecule in the equatorial position. Weak coordination of two additional glutamate oxygen atoms to both the axial positions Completes a distorted octahedron. The crystal structure shows that the lattice water is stabilized by the formation of strong H-bonding network with the coordinated water molecule. Removal and reabsorption of the water molecule have been studied by thermal analysis.