962 resultados para preterm premature rupture of the membranes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hereditary hemochromatosis (HH) is a common autosomal recessive disease associated with loss of regulation of dietary iron absorption and excessive iron deposition in major organs of the body. Recently, a candidate gene for HH (also called HFE) was identified that encodes a novel MHC class I-like protein. Most patients with HH are homozygous for the same mutation in the HFE gene, resulting in a C282Y change in the HFE protein. Studies in cultured cells show that the C282Y mutation abrogates the binding of the recombinant HFE protein to β2-microglobulin (β2M) and disrupts its transport to the cell surface. The HFE protein was shown by immunohistochemistry to be expressed in certain epithelial cells throughout the human alimentary tract and to have a unique localization in the cryptal cells of small intestine, where signals to regulate iron absorption are received from the body. In the studies presented here, we demonstrate by immunohistochemistry that the HFE protein is expressed in human placenta in the apical plasma membrane of the syncytiotrophoblasts, where the transferrin-bound iron is normally transported to the fetus via receptor-mediated endocytosis. Western blot analyses show that the HFE protein is associated with β2M in placental membranes. Unexpectedly, the transferrin receptor was also found to be associated with the HFE protein/β2M complex. These studies place the normal HFE protein at the site of contact with the maternal circulation where its association with transferrin receptor raises the possibility that the HFE protein plays some role in determining maternal/fetal iron homeostasis. These findings also raise the question of whether mutations in the HFE gene can disrupt this association and thereby contribute to some forms of neonatal iron overload.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isolated subcomplexes of photosystem II from spinach (CP47RC), composed of D1, D2, cytochrome b559, CP47, and a number of hydrophobic small subunits but devoid of CP43 and the extrinsic proteins of the oxygen-evolving complex, were shown to reconstitute the Mn4Ca1Clx cluster of the water-splitting system and to evolve oxygen. The photoactivation process in CP47RC dimers proceeds by the same two-step mechanism as observed in PSII membranes and exhibits the same stoichiometry for Mn2+, but with a 10-fold lower affinity for Ca2+ and an increased susceptibility to photodamage. After the lower Ca2+ affinity and the 10-fold smaller absorption cross-section for photons in CP47 dimers is taken into account, the intrinsic rate constant for the rate-limiting calcium-dependent dark step is indistinguishable for the two systems. The monomeric form of CP47RC also showed capacity to photoactivate and catalyze water oxidation, but with lower activity than the dimeric form and increased susceptibility to photodamage. After optimization of the various parameters affecting the photoactivation process in dimeric CP47RC subcores, 18% of the complexes were functionally reconstituted and the quantum efficiency for oxygen production by reactivated centers approached 96% of that observed for reconstituted photosystem II-enriched membranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phospholipids when dispersed in excess water generally form vesicular membrane structures. Cryo-transmission and freeze-fracture electron microscopy are combined here with calorimetry and viscometry to demonstrate the reversible conversion of phosphatidylglycerol aqueous vesicle suspensions to a three-dimensional structure that consists of extended bilayer networks. Thermodynamic analysis indicates that the structural transitions arise from two effects: (i) the enhanced membrane elasticity accompanying the lipid state fluctuations on chain melting and (ii) solvent-associated interactions (including electrostatics) that favor a change in membrane curvature. The material properties of the hydrogels and their reversible formation offer the possibility of future applications, for example in drug delivery, the design of structural switches, or for understanding vesicle fusion or fission processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Galactosialidosis (GS) is a human neurodegenerative disease caused by a deficiency of lysosomal protective protein/cathepsin A (PPCA). The GS mouse model resembles the severe human condition, resulting in nephropathy, ataxia, and premature death. To rescue the disease phenotype, GS mice were transplanted with bone marrow from transgenic mice overexpressing human PPCA specifically in monocytes/macrophages under the control of the colony stimulating factor-1 receptor promoter. Transgenic macrophages infiltrated and resided in all organs and expressed PPCA at high levels. Correction occurred in hematopoietic tissues and nonhematopoietic organs, including the central nervous system. PPCA-expressing perivascular and leptomeningeal macrophages were detected throughout the brain of recipient mice, although some neuronal cells, such as Purkinje cells, continued to show storage and died. GS mice crossed into the transgenic background reflected the outcome of bone marrow-transplanted mice, but the course of neuronal degeneration was delayed in this model. These studies present definite evidence that macrophages alone can provide a source of corrective enzyme for visceral organs and may be beneficial for neuronal correction if expression levels are sufficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yeast Sec18p and its mammalian orthologue N-ethylmaleimide-sensitive fusion protein (NSF) are hexameric ATPases with a central role in vesicle trafficking. Aided by soluble adapter factors (SNAPs), Sec18p/NSF induces ATP-dependent disassembly of a complex of integral membrane proteins from the vesicle and target membranes (SNAP receptors). During the ATP hydrolysis cycle, the Sec18p/NSF homohexamer undergoes a large-scale conformational change involving repositioning of the most N terminal of the three domains of each protomer, a domain that is required for SNAP-mediated interaction with SNAP receptors. Whether an internal conformational change in the N-terminal domains accompanies their reorientation with respect to the rest of the hexamer remains to be addressed. We have determined the structure of the N-terminal domain from Sec18p by x-ray crystallography. The Sec18p N-terminal domain consists of two β-sheet-rich subdomains connected by a short linker. A conserved basic cleft opposite the linker may constitute a SNAP-binding site. Despite structural variability in the linker region and in an adjacent loop, all three independent molecules in the crystal asymmetric unit have the identical subdomain interface, supporting the notion that this interface is a preferred packing arrangement. However, the linker flexibility allows for the possibility that other subdomain orientations may be sampled.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assembly and modulation of focal adhesions during dynamic adhesive processes are poorly understood. We describe here the use of ventral plasma membranes from adherent fibroblasts to explore mechanisms regulating integrin distribution and function in a system that preserves the integration of these receptors into the plasma membrane. We find that partial disruption of the cellular organization responsible for the maintenance of organized adhesive sites allows modulation of integrin distribution by divalent cations. High Ca2+ concentrations induce quasi-reversible diffusion of β1 integrins out of focal adhesions, whereas low Ca2+ concentrations induce irreversible recruitment of β1 receptors along extracellular matrix fibrils, as shown by immunofluorescence and electron microscopy. Both effects are independent from the presence of actin stress fibers in this system. Experiments with cells expressing truncated β1 receptors show that the cytoplasmic portion of β1 is required for low Ca2+-induced recruitment of the receptors to matrix fibrils. Analysis with function-modulating antibodies indicates that divalent cation-mediated receptor distribution within the membrane correlates with changes in the functional state of the receptors. Moreover, reconstitution experiments show that purified α-actinin colocalizes and redistributes with β1 receptors on ventral plasma membranes depleted of actin, implicating binding of α-actinin to the receptors. Finally, we found that recruitment of exogenous actin is specifically restricted to focal adhesions under conditions in which new actin polymerization is inhibited. Our data show that the described system can be exploited to investigate the mechanisms of integrin function in an experimental setup that permits receptor redistribution. The possibility to uncouple, under cell-free conditions, events involved in focal adhesion and actin cytoskeleton assembly should facilitate the comprehension of the underlying molecular mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eps15 is a substrate for the tyrosine kinase of the epidermal growth factor receptor (EGFR) and is characterized by the presence of a novel protein:protein interaction domain, the EH domain. Eps15 also stably binds the clathrin adaptor protein complex AP-2. Previous work demonstrated an essential role for eps15 in receptor-mediated endocytosis. In this study we show that, upon activation of the EGFR kinase, eps15 undergoes dramatic relocalization consisting of 1) initial relocalization to the plasma membrane and 2) subsequent colocalization with the EGFR in various intracellular compartments of the endocytic pathway, with the notable exclusion of coated vesicles. Relocalization of eps15 is independent of its binding to the EGFR or of binding of the receptor to AP-2. Furthermore, eps15 appears to undergo tyrosine phosphorylation both at the plasma membrane and in a nocodazole-sensitive compartment, suggesting sustained phosphorylation in endocytic compartments. Our results are consistent with a model in which eps15 undergoes cycles of association:dissociation with membranes and suggest multiple roles for this protein in the endocytic pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple isoforms of type 1 hexokinase (HK1) are transcribed during spermatogenesis in the mouse, including at least three that are presumably germ cell specific: HK1-sa, HK1-sb, and HK1-sc. Each of these predicted proteins contains a common, germ cell-specific sequence that replaces the porin-binding domain found in somatic HK1. Although HK1 protein is present in mature sperm and is tyrosine phosphorylated, it is not known whether the various potential isoforms are differentially translated and localized within the developing germ cells and mature sperm. Using antipeptide antisera against unique regions of HK1-sa and HK1-sb, it was demonstrated that these isoforms were not found in pachytene spermatocytes, round spermatids, condensing spermatids, or sperm, suggesting that HK1-sa and HK1-sb are not translated during spermatogenesis. Immunoreactivity was detected in protein from round spermatids, condensing spermatids, and mature sperm using an antipeptide antiserum against the common, germ cell-specific region, suggesting that HK1-sc was the only germ cell-specific isoform present in these cells. Two-dimensional SDS-PAGE suggested that all of the sperm HK1-sc was tyrosine phosphorylated, and that the somatic HK1 isoform was not present. Immunoelectron microscopy revealed that HK1-sc was associated with the mitochondria and with the fibrous sheath of the flagellum and was found in discrete clusters in the region of the membranes of the sperm head. The unusual distribution of HK1-sc in sperm suggests novel functions, such as extramitochondrial energy production, and also demonstrates that a hexokinase without a classical porin-binding domain can localize to mitochondria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rubella virus E1 glycoprotein normally complexes with E2 in the endoplasmic reticulum (ER) to form a heterodimer that is transported to and retained in the Golgi complex. In a previous study, we showed that in the absence of E2, unassembled E1 subunits accumulate in a tubular pre-Golgi compartment whose morphology and biochemical properties are distinct from both rough ER and Golgi. We hypothesized that this compartment corresponds to hypertrophied ER exit sites that have expanded in response to overexpression of E1. In the present study we constructed BHK cells stably expressing E1 protein containing a cytoplasmically disposed epitope and isolated the pre-Golgi compartment from these cells by cell fractionation and immunoisolation. Double label indirect immunofluorescence in cells and immunoblotting of immunoisolated tubular networks revealed that proteins involved in formation of ER-derived transport vesicles, namely p58/ERGIC 53, Sec23p, and Sec13p, were concentrated in the E1-containing pre-Golgi compartment. Furthermore, budding structures were evident in these membrane profiles, and a highly abundant but unknown 65-kDa protein was also present. By comparison, marker proteins of the rough ER, Golgi, and COPI vesicles were not enriched in these membranes. These results demonstrate that the composition of the tubular networks corresponds to that expected of ER exit sites. Accordingly, we propose the name SEREC (smooth ER exit compartment) for this structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytoplasmic dynein is one of the major motor proteins involved in intracellular transport. It is a protein complex consisting of four subunit classes: heavy chains, intermediate chains (ICs), light intermediate chains, and light chains. In a previous study, we had generated new monoclonal antibodies to the ICs and mapped the ICs to the base of the motor. Because the ICs have been implicated in targeting the motor to cargo, we tested whether these new antibodies to the intermediate chain could block the function of cytoplasmic dynein. When cytoplasmic extracts of Xenopus oocytes were incubated with either one of the monoclonal antibodies (m74–1, m74–2), neither organelle movement nor network formation was observed. Network formation and membrane transport was blocked at an antibody concentration as low as 15 μg/ml. In contrast to these observations, no effect was observed on organelle movement and tubular network formation in the presence of a control antibody at concentrations as high as 0.5 mg/ml. After incubating cytoplasmic extracts or isolated membranes with the monoclonal antibodies m74–1 and m74–2, the dynein IC polypeptide was no longer detectable in the membrane fraction by SDS-PAGE immunoblot, indicating a loss of cytoplasmic dynein from the membrane. We used a panel of dynein IC truncation mutants and mapped the epitopes of both antibodies to the N-terminal coiled-coil domain, in close proximity to the p150Glued binding domain. In an IC affinity column binding assay, both antibodies inhibited the IC–p150Glued interaction. Thus these findings demonstrate that direct IC–p150Glued interaction is required for the proper attachment of cytoplasmic dynein to membranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cell envelope (CE) is a specialized structure that is important for barrier function in terminally differentiated stratified squamous epithelia. The CE is formed inside the plasma membrane and becomes insoluble as a result of cross-linking of constituent proteins by isopeptide bonds formed by transglutaminases. To investigate the earliest stages of assembly of the CE, we have studied human epidermal keratinocytes induced to terminally differentiate in submerged liquid culture as a model system for epithelia in general. CEs were harvested from 2-, 3-, 5-, or 7-d cultured cells and examined by 1) immunogold electron microscopy using antibodies to known CE or other junctional proteins and 2) amino acid sequencing of cross-linked peptides derived by proteolysis of CEs. Our data document that CE assembly is initiated along the plasma membrane between desmosomes by head-to-tail and head-to-head cross-linking of involucrin to itself and to envoplakin and perhaps periplakin. Essentially only one lysine and two glutamine residues of involucrin and two glutamines of envoplakin were used initially. In CEs of 3-d cultured cells, involucrin, envoplakin, and small proline-rich proteins were physically located at desmosomes and had become cross-linked to desmoplakin, and in 5-d CEs, these three proteins had formed a continuous layer extending uniformly along the cell periphery. By this time >15 residues of involucrin were used for cross-linking. The CEs of 7-d cells contain significant amounts of the protein loricrin, typically expressed at a later stage of CE assembly. Together, these data stress the importance of juxtaposition of membranes, transglutaminases, and involucrin and envoplakin in the initiation of CE assembly of stratified squamous epithelia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial photosynthesis relies on the interplay between light harvesting and electron transfer complexes, all of which are located within the intracytoplasmic membrane. These complexes capture and transfer solar energy, which is used to generate a proton gradient. In this study, we identify one of the factors that determines the organization of these complexes. We undertook a comparison of the organization of the light-harvesting complex 1 (LH1)/reaction center (RC) cores in the LH2− mutant of Rhodobacter sphaeroides in the presence or absence of the PufX protein. From polarized absorption spectra on oriented membranes, we conclude that PufX induces a specific orientation of the reaction center in the LH1 ring, as well as the formation of a long-range regular array of LH1-RC cores in the photosynthetic membrane. From our data, we have constructed a precise model of how the RC is positioned within the LH1 ring relative to the long (orientation) axis of the photosynthetic membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of transgenetic studies argue that the scrapie isoform of the prion protein (PrPSc) interacts with the substrate cellular PrP (PrPC) during conversion into nascent PrPSc. While PrPSc appears to accumulate primarily in lysosomes, caveolae-like domains (CLDs) have been suggested to be the site where PrPC is converted into PrPSc. We report herein that CLDs isolated from scrapie-infected neuroblastoma (ScN2a) cells contain PrPC and PrPSc. After lysis of ScN2a cells in ice-cold Triton X-100, both PrP isoforms and an N-terminally truncated form of PrPC (PrPC-II) were found concentrated in detergent-insoluble complexes resembling CLDs that were isolated by flotation in sucrose gradients. Similar results were obtained when CLDs were purified from plasma membranes by sonication and gradient centrifugation; with this procedure no detergents are used, which minimizes artifacts that might arise from redistribution of proteins among subcellular fractions. The caveolar markers ganglioside GM1 and H-ras were found concentrated in the CLD fractions. When plasma membrane proteins were labeled with the impermeant reagent sulfo-N-hydroxysuccinimide-biotin, both PrPC and PrPSc were found biotinylated in CLD fractions. Similar results on the colocalization of PrPC and PrPSc were obtained when CLDs were isolated from Syrian hamster brains. Our findings demonstrate that both PrPC and PrPSc are present in CLDs and, thus, support the hypothesis that the PrPSc formation occurs within this subcellular compartment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we compared the transport of newly synthesized cholesterol with that of influenza virus hemagglutinin (HA) from the endoplasmic reticulum to the plasma membrane. The arrival of cholesterol on the cell surface was monitored by cyclodextrin removal, and HA transport was monitored by surface trypsinization and endoglycosidase H digestion. We found that disassembly of the Golgi complex by brefeldin A treatment resulted in partial inhibition of cholesterol transport while completely blocking HA transport. Further, microtubule depolymerization by nocodazole inhibited cholesterol and HA transport to a similar extent. When the partitioning of cholesterol into lipid rafts was analyzed, we found that newly synthesized cholesterol began to associate with low-density detergent-resistant membranes rapidly after synthesis, before it was detectable on the cell surface, and its raft association increased further upon chasing. When cholesterol transport was blocked by using 15°C incubation, the association of newly synthesized cholesterol with low-density detergent-insoluble membranes was decreased and cholesterol accumulated in a fraction with intermediate density. Our results provide evidence for the partial contribution of the Golgi complex to the transport of newly synthesized cholesterol to the cell surface and suggest that detergent-resistant membranes are involved in the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bile secretion involves the structural and functional interplay of hepatocytes and cholangiocytes, the cells lining the intrahepatic bile ducts. Hepatocytes actively secrete bile acids into the canalicular space and cholangiocytes then transport bile acids in a vectorial manner across their apical and basolateral plasma membranes. The initial step in the transepithelial transport of bile acids across rat cholangiocytes is apical uptake by a Na+-dependent bile acid transporter (ASBT). To date, the molecular basis of the obligate efflux mechanism for extrusion of bile acids across the cholangiocyte basolateral membrane remains unknown. We have identified an exon-2 skipped, alternatively spliced form of ASBT, designated t-ASBT, expressed in rat cholangiocytes, ileum, and kidney. Alternative splicing causes a frameshift that produces a 154-aa protein. Antipeptide antibodies detected the ≈19 kDa t-ASBT polypeptide in rat cholangiocytes, ileum, and kidney. The t-ASBT was specifically localized to the basolateral domain of cholangiocytes. Transport studies in Xenopus oocytes revealed that t-ASBT can function as a bile acid efflux protein. Thus, alternative splicing changes the cellular targeting of ASBT, alters its functional properties, and provides a mechanism for rat cholangiocytes and other bile acid-transporting epithelia to extrude bile acids. Our work represents an example in which a single gene appears to encode via alternative splicing both uptake and obligate efflux carriers in a bile acid-transporting epithelial cell.