900 resultados para potential distribution
Resumo:
Automatic load transfer (ALT) on the 11 kV network is the process by which circuit breakers on the network are switched to form open points in order to feed load from different primary substations. Some of the potential benefits that may be gained from dynamically using ALT include maximising utilisation of existing assets, voltage regulation and reduced losses. One of the key issues, that has yet to be properly addressed in published research, is how to validate that the modelled benefits really exist. On an 11 kV distribution network where the load is continually changing and the load on each distribution substation is unlikely to be monitored - reduction in losses from moving the normally open point is particularly difficult to prove. This study proposes a method to overcome this problem and uses measured primary feeder data from two parts of the Western Power Distribution 11 kV Network under different configurations. The process of choosing the different configurations is based on a heuristic modelling method of locating minimum voltages to help reduce losses.
Resumo:
Human use of the oceans is increasingly in conflict with conservation of endangered species. Methods for managing the spatial and temporal placement of industries such as military, fishing, transportation and offshore energy, have historically been post hoc; i.e. the time and place of human activity is often already determined before assessment of environmental impacts. In this dissertation, I build robust species distribution models in two case study areas, US Atlantic (Best et al. 2012) and British Columbia (Best et al. 2015), predicting presence and abundance respectively, from scientific surveys. These models are then applied to novel decision frameworks for preemptively suggesting optimal placement of human activities in space and time to minimize ecological impacts: siting for offshore wind energy development, and routing ships to minimize risk of striking whales. Both decision frameworks relate the tradeoff between conservation risk and industry profit with synchronized variable and map views as online spatial decision support systems.
For siting offshore wind energy development (OWED) in the U.S. Atlantic (chapter 4), bird density maps are combined across species with weights of OWED sensitivity to collision and displacement and 10 km2 sites are compared against OWED profitability based on average annual wind speed at 90m hub heights and distance to transmission grid. A spatial decision support system enables toggling between the map and tradeoff plot views by site. A selected site can be inspected for sensitivity to a cetaceans throughout the year, so as to capture months of the year which minimize episodic impacts of pre-operational activities such as seismic airgun surveying and pile driving.
Routing ships to avoid whale strikes (chapter 5) can be similarly viewed as a tradeoff, but is a different problem spatially. A cumulative cost surface is generated from density surface maps and conservation status of cetaceans, before applying as a resistance surface to calculate least-cost routes between start and end locations, i.e. ports and entrance locations to study areas. Varying a multiplier to the cost surface enables calculation of multiple routes with different costs to conservation of cetaceans versus cost to transportation industry, measured as distance. Similar to the siting chapter, a spatial decisions support system enables toggling between the map and tradeoff plot view of proposed routes. The user can also input arbitrary start and end locations to calculate the tradeoff on the fly.
Essential to the input of these decision frameworks are distributions of the species. The two preceding chapters comprise species distribution models from two case study areas, U.S. Atlantic (chapter 2) and British Columbia (chapter 3), predicting presence and density, respectively. Although density is preferred to estimate potential biological removal, per Marine Mammal Protection Act requirements in the U.S., all the necessary parameters, especially distance and angle of observation, are less readily available across publicly mined datasets.
In the case of predicting cetacean presence in the U.S. Atlantic (chapter 2), I extracted datasets from the online OBIS-SEAMAP geo-database, and integrated scientific surveys conducted by ship (n=36) and aircraft (n=16), weighting a Generalized Additive Model by minutes surveyed within space-time grid cells to harmonize effort between the two survey platforms. For each of 16 cetacean species guilds, I predicted the probability of occurrence from static environmental variables (water depth, distance to shore, distance to continental shelf break) and time-varying conditions (monthly sea-surface temperature). To generate maps of presence vs. absence, Receiver Operator Characteristic (ROC) curves were used to define the optimal threshold that minimizes false positive and false negative error rates. I integrated model outputs, including tables (species in guilds, input surveys) and plots (fit of environmental variables, ROC curve), into an online spatial decision support system, allowing for easy navigation of models by taxon, region, season, and data provider.
For predicting cetacean density within the inner waters of British Columbia (chapter 3), I calculated density from systematic, line-transect marine mammal surveys over multiple years and seasons (summer 2004, 2005, 2008, and spring/autumn 2007) conducted by Raincoast Conservation Foundation. Abundance estimates were calculated using two different methods: Conventional Distance Sampling (CDS) and Density Surface Modelling (DSM). CDS generates a single density estimate for each stratum, whereas DSM explicitly models spatial variation and offers potential for greater precision by incorporating environmental predictors. Although DSM yields a more relevant product for the purposes of marine spatial planning, CDS has proven to be useful in cases where there are fewer observations available for seasonal and inter-annual comparison, particularly for the scarcely observed elephant seal. Abundance estimates are provided on a stratum-specific basis. Steller sea lions and harbour seals are further differentiated by ‘hauled out’ and ‘in water’. This analysis updates previous estimates (Williams & Thomas 2007) by including additional years of effort, providing greater spatial precision with the DSM method over CDS, novel reporting for spring and autumn seasons (rather than summer alone), and providing new abundance estimates for Steller sea lion and northern elephant seal. In addition to providing a baseline of marine mammal abundance and distribution, against which future changes can be compared, this information offers the opportunity to assess the risks posed to marine mammals by existing and emerging threats, such as fisheries bycatch, ship strikes, and increased oil spill and ocean noise issues associated with increases of container ship and oil tanker traffic in British Columbia’s continental shelf waters.
Starting with marine animal observations at specific coordinates and times, I combine these data with environmental data, often satellite derived, to produce seascape predictions generalizable in space and time. These habitat-based models enable prediction of encounter rates and, in the case of density surface models, abundance that can then be applied to management scenarios. Specific human activities, OWED and shipping, are then compared within a tradeoff decision support framework, enabling interchangeable map and tradeoff plot views. These products make complex processes transparent for gaming conservation, industry and stakeholders towards optimal marine spatial management, fundamental to the tenets of marine spatial planning, ecosystem-based management and dynamic ocean management.
Resumo:
Tropical Cyclones are a continuing threat to life and property. Willoughby (2012) found that a Pareto (power-law) cumulative distribution fitted to the most damaging 10% of US hurricane seasons fit their impacts well. Here, we find that damage follows a Pareto distribution because the assets at hazard follow a Zipf distribution, which can be thought of as a Pareto distribution with exponent 1. The Z-CAT model is an idealized hurricane catastrophe model that represents a coastline where populated places with Zipf- distributed assets are randomly scattered and damaged by virtual hurricanes with sizes and intensities generated through a Monte-Carlo process. Results produce realistic Pareto exponents. The ability of the Z-CAT model to simulate different climate scenarios allowed testing of sensitivities to Maximum Potential Intensity, landfall rates and building structure vulnerability. The Z-CAT model results demonstrate that a statistical significant difference in damage is found when only changes in the parameters create a doubling of damage.
Resumo:
The seasonal, spatial and bathymetric changes in the distribution of chloroplastic pigments (Chl a, phaeopigments and CPE), TOC, TON, ATP, bottom water nutrient content and the main biochemical classes of organic compounds (lipids, proteins and carbohydrates) were recorded from May 1994 to September 1995 over the continental margin of northern Crete. The concentration of chloroplastic pigment equivalents (CPE) was always low, dropping dramatically along the shelf-slope gradient. Microbial activity (ATP) also dropped sharply beyond the continental shelf following a distribution pattern similar to TOC and TON. Lipid, protein and carbohydrate concentrations, as well as biopolymeric carbon were comparable to those reported for other more productive areas, however, the quality of the organic matter itself was rather poor. Thus, carbohydrates, the dominant biochemical class, were characterised by being highly (80-99%) refractory, as soluble carbohydrates represented (on annual average) only 6% of the total carbohydrate pool. Protein and lipid concentrations strongly decreased with depth, indicating depletion of trophic resources in the bathyal zone. Proteins appeared to be the more degradable compounds and indeed the protein to carbohydrate ratios were found to decrease strongly in the deeper stations. Organic matter content and quality decreased both with increasing distance from the coast and within the sediment. All sedimentary organic compounds were found to vary between sampling periods, with the changes being more pronounced over the continental shelf. The different temporal patterns of the various components suggest a different composition and/or origin of the OM inputs during the different sampling periods. The amount of material reaching the sediments below 540 m is extremely low, suggesting that most of the organic material is decomposed and/or utilised before reaching the sea floor. In conclusion, the continental shelf and bathyal sediments of the Cretan Sea can be considered, from a trophic point of view, as two different subsystems.
Resumo:
The sea-surface microlayer (SML) is at the upper- most surface of the ocean, linking the hydrosphere with the atmosphere. The presence and enrichment of organic compounds in the SML have been suggested to influence air- sea gas exchange processes as well as the emission of primary organic aerosols. Here, we report on organic matter components collected from an approximately 50µm thick SML and from the underlying water (ULW), ca. 20 cm below the SML, in December 2012 during the SOPRAN METEOR 91 cruise to the highly productive, coastal upwelling regime off the coast of Peru. Samples were collected at 37 stations including coastal upwelling sites and off-shore stations with less organic matter and were analyzed for total and dissolved high molecular weight (> 1 kDa) combined carbohydrates (TCCHO, DCCHO), free amino acids (FAA), total and dissolved hydrolyzable amino acids (THAA, DHAA), transparent exopolymer particles (TEP), Coomassie stainable particles (CSPs), total and dissolved organic carbon (TOC, DOC), total and dissolved nitrogen (TN, TDN), as well as bacterial and phytoplankton abundance. Our results showed a close coupling between organic matter concentrations in the water column and in the SML for almost all components except for FAA and DHAA that showed highest enrichment in the SML on average. Accumulation of gel particles (i.e., TEP and CSP) in the SML differed spatially. While CSP abundance in the SML was not related to wind speed, TEP abundance decreased with wind speed, leading to a depletion of TEP in the SML at about 5 m s-1 . Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.
Resumo:
Sediment whole-round cores from a dedicated hole (798B) were obtained for detailed microbiological analysis, down to 518 m below the seafloor (mbsf). These sediments have characteristic bacterial profiles in the top 6 mbsf, with high but rapidly decreasing bacterial populations (total and dividing bacteria, and concentrations of different types of viable heterotrophic bacteria) and potential bacterial activities. Rates of thymidine incorporation into bacterial DNA and anaerobic sulfate reduction are high in the surface sediments and decrease rapidly down to 3 mbsf. Methanogenesis from CO2/H2 peaks below the maximum in sulfate reduction and although it decreases markedly down the core, is present at low rates at all but one depth. Consistent with these activities is the removal of pore-water sulfate, methane gas production, and accumulation of reduced sulfide species. Rates of decrease in bacterial populations slow down below 6 mbsf, and there are some distinct increases in bacterial populations and activities that continue over considerable depth intervals. These include a large and significant increase in total heterotrophic bacteria below 375 mbsf, which corresponds to an increase in the total bacterial population, bacterial viability, a small increase in potential rates of sulfate reduction, and the presence of thermogenic methane and other gases. Bacterial distributions seem to be controlled by the availability of terminal electron acceptors (e.g., sulfate), the bioavailability of organic carbon (which may be related to the dark/light bands within the sediment), and biological and geothermal methane production. Significant bacterial populations are present even in the deepest samples (518 mbsf) and hence it seems likely that bacteria may continue to be present and active much deeper than the sediments studied here. These results confirm and extend our previous results of bacterial activity within deep sediments of the Peru Margin from Leg 112, and to our knowledge this is the first comprehensive report of the presence of active bacterial populations from the sediment surface to in excess of 500 mbsf and sediments > 4 m.y. old.
Resumo:
A general study of structure, biomass, and dynamic estimates on meiofauna was carried out during PREFLEX (1975) and FLEX (1976), in 117- 141 m water depth. On the basis of these data an attempt was made to estimate meiofauna production, and this is discussed in relation to the energy input from the spring phytoplankton bloom. Sampling was performed at five stations, but only the stations 1, 4, and 5 were covered by a complete series from August 1975 to July 1976. At each station, from four replicate box core samples, two were withdrawn to study the abundance, distribution, and biomass of meiofauna, the content of chloroplastic pigment equivalents (CPE), and chemical and grain size analyses. At all stations grain size fell in the range of fine sand having median diameters (MD) of < 125 µm. From station 1 to 5 an increase in MD was observed. Highest values of CPE (7.81 µg m l**-1) and organic matter (4.7 %) were obtained in June and July (1976)/ August (1975), respectively. Meiofauna abundance was fairly uniform at all stations examined. Station 1 displayed maximal numbers during the whole investigation period. The abundance per 100 cm**2 varied between 15,550 and 34,900 organisms. All meiofauna studied both in total and as separate taxa showed annual cycles of abundance. Low abundance values were recorded during early summer, and maximum values during winter. High numbers of Foraminifera were obtained for August 1975 (9,460 per 100 cm**2) and July 1976 (9,710 per 100 cm**2). From December to June the values decreased from 3,280 to 1,030 per 100 cm**2. At station 1 maximum values of meiofauna biomass were recorded ranging from 1.5 to 2.7 g DWT m**-2. The mean meiofauna dry weight amounted to 2.1 g DWT m**-2. Based on minimum production, the P/B ratio for the area of station 1 might have a mean of 1.4. Taking into consideration generation times we believe that a turnover ratio of 2 is a conservative value for the Fladen Ground meiofauna. The annual production would amount to 4.2 g DWT m**-2 yr**-1. This is 27.5 % of the energy supply during the spring phytoplankton bloom, which is channelled into the meiofauna. The hypothesis is put forward that the energetic strategy of deep offshore meiofauna differs distinctively from that of shallow inshore meiofauna. While the shallow inshore meiofauna show a relatively fast response to organic matter input, the deep offshore meiofauna reacts much more slowly, the food energy consumption seems to be spread out over a longer period.
Resumo:
We analysed long-term variations in grain-size distribution in sediments from Gåsfjärden, a fjord-like inlet on the south-west Baltic Sea, and explored potential drivers of the recorded changes in sediment grain-size data. Over the last 5.4 thousand years (ka), the relative sea level decreased 17 m in the study region, caused by isostatic land uplift. As a consequence, Gåsfjärden has been transformed from an open coastal setting into a semi-closed inlet surrounded on the east by numerous small islands. To quantitatively estimate the morphological changes in Gåsfjärden over the last 5.4 ka and to further link the changes to our grain-size data, a digital elevation model (DEM)-based openness index was calculated. In the period between 5.4 and 4.4 ka BP, the inlet was characterised by the largest openness index. During this interval, the highest sand contents (~0.4 %) and silt/clay ratios (~0. 3) in the sediment sequence were recorded, indicating relatively high bottom water energy. After 4.4 ka BP, the average sand content was halved to ~0.2 % and the silt/clay ratios showed a significant decreasing trend over the last 4 ka. These changes are found to be associated with the gradual embayment of Gåsfjärden as represented in the openness index. The silt/clay ratios exhibited a delayed and slower change compared with the sand contents, which further suggest that finer particles are less sensitive to changes in hydrodynamic energy. Our DEM-based coastal openness index has proved to be a useful tool for interpreting the sedimentary grain-size record.
Resumo:
Two years of harmonized aerosol number size distribution data from 24 European field monitoring sites have been analysed. The results give a comprehensive overview of the European near surface aerosol particle number concentrations and number size distributions between 30 and 500 nm of dry particle diameter. Spatial and temporal distribution of aerosols in the particle sizes most important for climate applications are presented. We also analyse the annual, weekly and diurnal cycles of the aerosol number concentrations, provide log-normal fitting parameters for median number size distributions, and give guidance notes for data users. Emphasis is placed on the usability of results within the aerosol modelling community. We also show that the aerosol number concentrations of Aitken and accumulation mode particles (with 100 nm dry diameter as a cut-off between modes) are related, although there is significant variation in the ratios of the modal number concentrations. Different aerosol and station types are distinguished from this data and this methodology has potential for further categorization of stations aerosol number size distribution types. The European submicron aerosol was divided into characteristic types: Central European aerosol, characterized by single mode median size distributions, unimodal number concentration histograms and low variability in CCN-sized aerosol number concentrations; Nordic aerosol with low number concentrations, although showing pronounced seasonal variation of especially Aitken mode particles; Mountain sites (altitude over 1000 m a.s.l.) with a strong seasonal cycle in aerosol number concentrations, high variability, and very low median number concentrations. Southern and Western European regions had fewer stations, which decreases the regional coverage of these results. Aerosol number concentrations over the Britain and Ireland had very high variance and there are indications of mixed air masses from several source regions; the Mediterranean aerosol exhibit high seasonality, and a strong accumulation mode in the summer. The greatest concentrations were observed at the Ispra station in Northern Italy with high accumulation mode number concentrations in the winter. The aerosol number concentrations at the Arctic station Zeppelin in Ny-Ålesund in Svalbard have also a strong seasonal cycle, with greater concentrations of accumulation mode particles in winter, and dominating summer Aitken mode indicating more recently formed particles. Observed particles did not show any statistically significant regional work-week or weekday related variation in number concentrations studied. Analysis products are made for open-access to the research community, available in a freely accessible internet site. The results give to the modelling community a reliable, easy-to-use and freely available comparison dataset of aerosol size distributions.
Resumo:
Focussing on heavy-mineral associations in the Laptev-Sea continental margin area and the eastern Arctic Ocean, 129 surface sediment samples, two short and four long gravity cores have been studied. By means of the accessory components, heavy-mineral associations of surface sediment samples from the Laptev-See continental slope allowed the distinction into two different mineralogical provinces, each influenced by fluvial input of the Siberian river Systems. Transport pathways via sea ice from the shallow shelf areas into the Arctic Ocean up to the final ablation areas of the Fram Strait can be reconstructed by heavy-mineral data of surface sediments from the central Arctic Ocean. The shallow shelf of the Laptev Sea seems to be the most important source area for terrigenous material, as indicated by the abundant occurence of amphiboles and clinopyroxenes. Underneath the mixing Zone of the two dominating surface circulation Systems, the Beaufort- Gyre and Transpolar-Drift system, the imprint of the Amerasian shelf regions up to the Fram Strait is detectable because of a characteristical heavy-mineral association dominated by detrital carbonate and opaque minerals. Based On heavy-mineral characteristics of the potential circum-Arctic source areas, sea-ice drift, origin and distribution of ice-rafted material can be reconstructed during the past climatic cycles. Different factors controlling the transport of terrigenous material into the Arctic Ocean. The entrainment of particulate matter is triggered by the sea level, which flooded during highs and lows different regions resulting in the incorporation of sediment from different source areas into the sea ice. Additionally, the fluvial input even at low stands of sea level is responsible for the delivery of material of distinct sources for entrainment into the sea ice. Glacials and interglacials of climate cycles of the last 780 000 years left a characteristical signal in the central Arctic Ocean sediments caused by the ice- rafted material from different sources in the circum-Arctic regions and its change through time. Changes in the heavy-mineral association from an amphibole-dominated into a garnet-epidote-assemblage can be related to climate-related changes in source areas and directions of geostrophic winds, the dominating drive of the sea-ice drift. During Marine Isotope Stage (MIS) 6, the central Arctic Ocean is marked by an heavy-mineral signal, which occurs in recent sediments of the eastern Kara Sea. Its characteristics are high amounts of epidote, garnet and apatite. On the other hand, during the Same time interval a continuous record of Laptev Sea sediments is documented with high contents of amphiboles on the Lomonosov Ridge near the Laptev Sea continental slope. A nearly similar Pattern was detected in MIS 5 and 4. Small-scale glaciations in the Putorana-mountains and the Anabar-shield may have caused changes in the drainage area of the rivers and therefore a change in fluvial input. During MIS 3, the heavy-mineral association of central Arctic sediments show similar patterns than the Holocene mineral assemblage which consists of amphiboles, ortho- and clinopyroxenes with a Laptev Sea source. These minerals are indicating a stable Transpolar-Drift system similar to recent conditions. An extended influence of the Beaufort Gyre is only recognized, when sediment material from the Amerasian shelf areas reached the core location PS2757-718 during Termination Ib. Based On heavy-mineral data from Laptev-Sea continental slope Core PS2458-4 the paleo-sea-ice drift in the Laptev Sea during 14.000 years was reconstructed. During Holocene sea-level rise, the bathymetrically deeper parts of the Western shelf were flooded first. At the beginning of the Atlantic stage, nearly the entire shelf was marine influenced by fully marine conditions and the recent surface circulation was established.
Resumo:
The fine-scale depth distribution of major carbon pools and their stable carbon isotopic signatures (d13C) were determined in a cyanobacterial mat (Salin-de-Giraud, Camargue, France) to study early diagenetic alterations and the carbon preservation potential in hypersaline mat ecosystems. Particular emphasis was placed on the geochemical role of extracellular polymeric substances (EPS). Total carbon (Ctot), organic carbon (Corg), total nitrogen (Ntot), total hydrolysable amino acids (THAA), carbohydrates, cyanobacteria-derived hydrocarbons (8-methylhexadecane, n-heptadec-5-ene, n-heptadecane) and EPS showed highest concentrations in the top millimetre of the mat and decreased with depth. The hydrocarbons attributed to cyanobacteria showed the strongest decrease in concentration with depth. This correlated well with the depth profiles of oxygenic photosynthesis and oxygen, which were detected in the top 0.6 and 1.05 mm, respectively, at a high down-welling irradiance (1441 µmol photons m**-2 s**-1). At depths beneath the surface layer, the Corg was composed mainly of amino acids and carbohydrates. A resistance towards microbial degradation could have resulted from interactions with diverse functional groups present in biopolymers (EPS) and with minerals deposited in the mat. A 13C enrichment with depth for the total carbon pool (Ctot) was observed, with d13C values ranging from -16.3 permil at the surface to -11.3 permil at 9-10 mm depth. Total lipids depicted a d13C value of -17.2 permil in the top millimetre and then became depleted in 13C with depth (-21.7 to -23.3 permil). The d13C value of EPS varied only slightly with depth (-16.1 to -17.3 permil) and closely followed the d13C value of Corg at depths beneath 4 mm. The EPS represents an organic carbon pool of preservation potential during early stages of diagenesis in recent cyanobacterial mats as a result of a variety of possible interactions. Their analyses might improve our understanding of fossilized microbial remains from mat ecosystems.
Resumo:
Veterinary medicines (VMs) from agricultural industry can enter the environment in a number of ways. This includes direct exposure through aquaculture, accidental spillage and disposal, and indirect entry by leaching from manure or runoff after treatment. Many compounds used in animal treatments have ecotoxic properties that may have chronic or sometimes lethal effects when they come into contact with non-target organisms. VMs enter the environment in mixtures, potentially having additive effects. Traditional ecotoxicology tests are used to determine the lethal and sometimes reproductive effects on freshwater and terrestrial organisms. However, organisms used in ecotoxicology tests can be unrepresentative of the populations that are likely to be exposed to the compound in the environment. Most often the tests are on single compound toxicity but mixture effects may be significant and should be included in ecotoxicology testing. This work investigates the use, measured environmental concentrations (MECs) and potential impact of sea lice treatments on salmon farms in Scotland. Alternative methods for ecotoxicology testing including mixture toxicity, and the use of in silico techniques to predict the chronic impact of VMs on different species of aquatic organisms were also investigated. The Scottish Environmental Protection Agency (SEPA) provided information on the use of five sea lice treatments from 2008-2011 on Scottish salmon farms. This information was combined with the recently available data on sediment MECs for the years 2009-2012 provided by SEPA using ArcGIS 10.1. In depth analysis of this data showed that from a total of 55 sites, 30 sites had a MEC higher than the maximum allowable concentration (MAC) as set out by SEPA for emamectin benzoate and 7 sites had a higher MEC than MAC for teflubenzuron. A number of sites that were up to 16 km away from the nearest salmon farm reported as using either emamectin benzoate or teflubenzuron measured positive for the two treatments. There was no relationship between current direction and the distribution of the sea lice treatments, nor was there any evidence for alternative sources of the compounds e.g. land treatments. The sites that had MECs higher than the MAC could pose a risk to non-target organisms and disrupt the species dynamics of the area. There was evidence that some marine protected sites might be at risk of exposure to these compounds. To complement this work, effects on acute mixture toxicity of the 5 sea lice treatments, plus one major metabolite 3-phenoxybenzoic acid (3PBA), were measured using an assay using the bioluminescent bacteria Aliivibrio fischeri. When exposed to the 5 sea lice treatments and 3PBA A. fischeri showed a response to 3PBA, emamectin benzoate and azamethiphos as well as combinations of the three. In order to establish any additive effect of the sea lice treatments, the efficacy of two mixture prediction equations, concentration addition (CA) and independent action ii(IA) were tested using the results from single compound dose response curves. In this instance IA was the more effective prediction method with a linear regression confidence interval of 82.6% compared with 22.6% of CA. In silico molecular docking was carried out to predict the chronic effects of 15 VMs (including the five used as sea lice control). Molecular docking has been proposed as an alternative screening method for the chronic effects of large animal treatments on non-target organisms. Oestrogen receptor alpha (ERα) of 7 non-target bony fish and the African clawed frog Xenopus laevis were modelled using SwissModel. These models were then ‘docked’ to oestradiol, the synthetic oestrogen ethinylestradiol, two known xenoestrogens dichlorodiphenyltrichloroethane (DDT) and bisphenol A (BPA), the antioestrogen breast cancer treatment tamoxifen and 15 VMs using Auto Dock 4. Based on the results of this work, four VMs were identified as being possible xenoestrogens or anti-oestrogens; these were cypermethrin, deltamethrin, fenbendazole and teflubenzuron. Further investigation, using in vitro assays, into these four VMs has been suggested as future work. A modified recombinant yeast oestrogen screen (YES) was attempted using the cDNA of the ERα of the zebrafish Danio rerio and the rainbow trout Oncorhynchus mykiss. Due to time and difficulties in cloning protocols this work was unable to be completed. Use of such in vitro assays would allow for further investigation of the highlighted VMs into their oestrogenic potential. In conclusion, VMs used as sea lice treatments, such as teflubenzuron and emamectin benzoate may be more persistent and have a wider range in the environment than previously thought. Mixtures of sea lice treatments have been found to persist together in the environment, and effects of these mixtures on the bacteria A. fischeri can be predicted using the IA equation. Finally, molecular docking may be a suitable tool to predict chronic endocrine disrupting effects and identify varying degrees of impact on the ERα of nine species of aquatic organisms.
Resumo:
The Green Economy offers real possibilities for productive innovation, economic growth and employment creation in Spain. These three factors are critical to facilitate the necessary change in the productive model to overcome the crisis. However, the measures taken by the current Conservative government have moved in the opposite direction: significant cutting in incentives for renewable, increasing tax burden on renewable energy production to self-consumption and privatizing public spaces of social and environmental interest. This hinders the achievement of the environmental objectives of the Europe 2020 strategy. A strategy that is born already in itself highly limited, unambitious and subordinated to the interests of energy oligopolies and the imperatives of the Stability and Growth Pact (Maastricht) and the Austerity policies imposed from EU institutions to overcome the 2008 financial crisis. So the Ecological Transition goes further, claiming a substantially change in Economic Policy away form the increasing commodification proposed by the Green Economy. Despite these limitations, young and unemployed people have much to gain from a comprehensive development of environmental industries. Therefore, innovative-sustainable plans, investment and training in green sectors are necessary to make easier the transition from a services low-valued economy to an innovative and sustainable model to make our country an environmental reference in Europe.
Resumo:
Antarctic krill Euphausia superba are a key component of food webs in the maritime West Antarctic Peninsula, and their life history is tied to the seasonal cycles of sea ice and primary production in the region. Previous work has shown a general in-shore migration of krill in winter in this region; however, the very near-shore has not often been sampled as part of these surveys. We investigated distribution, abundance, and size structure of krill in 3 fjordic bays along the peninsula, and in the adjacent Gerlache Strait area using vertically stratified MOCNESS net tows and ADCP acoustic biomass estimates. Krill abundance was high within bays, with net estimated densities exceeding 60 krill m-3, while acoustic estimates were an order of magnitude higher. Krill within bays were larger than krill in the Gerlache Strait. Within bays, krill aggregations were observed near the seafloor during the day with aggregations extending to the sediment interface, and exhibited diel vertical migration higher into the water column at night. We suggest these high winter krill abundances within fjords are indicative of an active seasonal migration by krill in the peninsula region. Potential drivers for such a migration include reduced advective losses and costs, and availability of sediment food resources within fjords. Seasonally near-shore krill may also affect stock and recruitment assessments and may have implications for managing the krill fishery in this area.
Resumo:
Antarctic krill Euphausia superba are a key component of food webs in the maritime West Antarctic Peninsula, and their life history is tied to the seasonal cycles of sea ice and primary production in the region. Previous work has shown a general in-shore migration of krill in winter in this region; however, the very near-shore has not often been sampled as part of these surveys. We investigated distribution, abundance, and size structure of krill in 3 fjordic bays along the peninsula, and in the adjacent Gerlache Strait area using vertically stratified MOCNESS net tows and ADCP acoustic biomass estimates. Krill abundance was high within bays, with net estimated densities exceeding 60 krill m-3, while acoustic estimates were an order of magnitude higher. Krill within bays were larger than krill in the Gerlache Strait. Within bays, krill aggregations were observed near the seafloor during the day with aggregations extending to the sediment interface, and exhibited diel vertical migration higher into the water column at night. We suggest these high winter krill abundances within fjords are indicative of an active seasonal migration by krill in the peninsula region. Potential drivers for such a migration include reduced advective losses and costs, and availability of sediment food resources within fjords. Seasonally near-shore krill may also affect stock and recruitment assessments and may have implications for managing the krill fishery in this area.