952 resultados para potassium bicarbonate
Resumo:
Relatório de estágio de mestrado, Geologia Aplicada (Hidrogeologia), Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
Pectobacterium wasabiae (previously known as Erwinia carotovora) is an important plant pathogen that regulates the production of plant cell wall-degrading enzymes through an N-acyl homoserine lactone-based quorum sensing system and through the GacS/GacA two-component system (also known as ExpS/ExpA). At high cell density, activation of GacS/GacA induces the expression of RsmB, a noncoding RNA that is essential for the activation of virulence in this bacterium. A genetic screen to identify regulators of RsmB revealed that mutants defective in components of a putative Trk potassium transporter (trkH and trkA) had decreased rsmB expression. Further analysis of these mutants showed that changes in potassium concentration influenced rsmB expression and consequent tissue damage in potato tubers and that this regulation required an intact Trk system. Regulation of rsmB expression by potassium via the Trk system occurred even in the absence of the GacS/GacA system, demonstrating that these systems act independently and are both required for full activation of RsmB and for the downstream induction of virulence in potato infection assays. Overall, our results identified potassium as an essential environmental factor regulating the Rsm system, and the consequent induction of virulence, in the plant pathogen P. wasabiae.
Resumo:
Terrestrial permafrost archives along the Yukon Coastal Plain (northwest Canada) have recorded landscape development and environmental change since the Late Wisconsinan at the interface of unglaciated Beringia (i.e. Komakuk Beach) and the northwestern limit of the Laurentide Ice Sheet (i.e. Herschel Island). The objective of this paper is to compare the late glacial and Holocene landscape development on both sides of the former ice margin based on permafrost sequences and ground ice. Analyses at these sites involved a multi-proxy approach including: sedimentology, cryostratigraphy, palaeoecology of ostracods, stable water isotopes in ground ice, hydrochemistry, and AMS radiocarbon and infrared stimulated luminescence (IRSL) dating. AMS and IRSL age determinations yielded full glacial ages at Komakuk Beach that is the northeastern limit of ice-free Beringia. Herschel Island to the east marks the Late Wisconsinan limit of the northwest Laurentide Ice Sheet and is composed of ice-thrust sediments containing plant detritus as young as 16.2 cal ka BP that might provide a maximum age on ice arrival. Late Wisconsinan ice wedges with sediment-rich fillings on Herschel Island are depleted in heavy oxygen isotopes (mean d18O of -29.1 per mil); this, together with low d-excess values, indicates colder-than-modern winter temperatures and probably reduced snow depths. Grain-size distribution and fossil ostracod assemblages indicate that deglaciation of the Herschel Island ice-thrust moraine was accompanied by alluvial, proluvial, and eolian sedimentation on the adjacent unglaciated Yukon Coastal Plain until ~11 cal ka BP during a period of low glacio-eustatic sea level. The late glacial-Holocene transition was marked by higher-than-modern summer temperatures leading to permafrost degradation that began no later than 11.2 cal ka BP and caused a regional thaw unconformity. Cryostructures and ice wedges were truncated while organic matter was incorporated and soluble ions were leached in the thaw zone. Thermokarst activity led to the formation of ice-wedge casts and deposition of thermokarst lake sediments. These were subsequently covered by rapidly accumulating peat during the early Holocene Thermal Maximum. A rising permafrost table, reduced peat accumulation, and extensive ice-wedge growth resulted from climate cooling starting in the middle Holocene until the late 20th century. The reconstruction of palaeolandscape dynamics on the Yukon Coastal Plain and the eastern Beringian edge contributes to unraveling the linkages between ice sheet, ocean, and permafrost that have existed since the Late Wisconsinan.
Resumo:
BACKGROUND Gastrointestinal (GI) complications often delay recovery after radical cystectomy with urinary diversion. The authors investigated if perioperative administration of a potassium-enriched, chloride-depleted 5% glucose solution (G5K) accelerates recovery of GI function. METHODS This randomized, parallel-group, single-center double-blind trial included 44 consecutive patients undergoing radical cystectomy and pelvic lymph node dissection with urinary diversion. Patients were randomized to receive either a G5K (G5K group) solution or a Ringer's maleate solution (control group). Fluid management aimed for a zero fluid balance. Primary endpoint was time to first defecation. Secondary endpoints were time to normal GI function, need for electrolyte substitution, and renal dysfunction. RESULTS Time to first defecation was not significantly different between groups (G5K group, 93 h [19 to 168 h] and control group, 120 h [43 to 241 h]); estimator of the group difference, -16 (95% CI, -38 to 6); P = 0.173. Return of normal GI function occurred faster in the G5K group than in the control group (median, 138 h [range, 54 to 262 h] vs. 169 h [108 to 318 h]); estimator of the group difference, -38 (95% CI, -74 to -12); P = 0.004. Potassium and magnesium were less frequently substituted in the G5K group (13.6 vs. 54.5% [P = 0.010] and 18.2 vs. 77.3% [P < 0.001]), respectively. The incidence of renal dysfunction (Risk, Injury, Failure, Loss and End-stage kidney disease stage "risk") at discharge was 9.1% in the G5K group and 4.5% in the control group; P = 1.000. CONCLUSIONS Perioperative administration of a G5K did not enhance first defecation, but may accelerate recovery of normal GI function, and reduces potassium and magnesium substitution after radical cystectomy and urinary diversion.
Resumo:
"Contract AT(11-1)-229."
Resumo:
"Contract AT(30-1)-2789."
Resumo:
"Contract AT(30-1)-2789."