898 resultados para poly-l-arginine
Resumo:
A new method for fabricating hydrogels with intricate control over hierarchical 3D porosity using micro-fiber porogens is presented. Melt electrospinning writing of poly(ε-caprolactone) is used to create the sacrificial template leading to hierarchical structuring consisting of pores inside the denser poly(2-oxazoline) hydrogel mesh. This versatile approach provides new opportunities to create well-defined multilevel control over interconnected pores with diameters in the lower micrometer range inside hydrogels with potential applications as cell scaffolds with tunable diffusion and transport of, e.g. nutrients, growth factors or therapeutics.
Resumo:
M r = 339.35, monoclinic, P2 t, a = 11.028 (2), b=9.583 (2), c= 16.010 (2) A, fl= 96.57 (1) °, U= 1680.85 A 3, Z = 4, D m = 1.37, D x= 1.34 Mg m -3, Cu Ka, 2 = 1.54184 A, p = 0.85 mm -1, F(000)=728, T=300K, R=0.085 for 2845 diffractometer- measured reflections IF o > 3cr(Fo)]. The two molecules in the asymmetric unit have similar conformations except for a static disorder at the C ~ and C ~ positions in one of the glutamic-acid side chains. An interesting feature of the crystal structure is a pair of hydrogen bonds between the guanidinium and ycarboxylate groups of neighbouring molecules. This is the first such specific interaction observed between side chains of arginine and glutamic acid.
Studies on crystalline complexes involving amino acids. V. The structure of L-serine-L-ascorbic acid
Resumo:
L-Serine-L-ascorbic acid, C3HTNOa. C6HsO6, a 1:1 complex between the amino acid serine and the vitamin ascorbic acid, crystallizes in the orthorhombic space group P2~2~2~ with four formula units in a cell of dimensions a = 5.335(3), b = 8.769(2), c = 25.782 (5) A. The structure was solved by direct methods and refined by full-matrix least squares to an R of 0.036 for 951 observed reflections. Both molecules are neutral in the structure. The conformation of the serine molecule is different from that observed in the crystal structures of L-serine, DL-serine and L-serine monohydrate. The enediol group in the ascorbic acid molecule is planar, whereas significant departures from planarity are observed in the lactone group. The conformation of this molecule is similar to that observed in arginine ascorbate. The unlike molecules aggregate into separate columns in the crystal structure. The columns are held together by hydrogen bonds. Among these, a pair of hydrogen bonds between the enediol group of ascorbic acid and the carboxylate group of serine provides a possible model for a specific interaction between ascorbic acid and a carboxylate ion.
Resumo:
Arginine decarboxylase which makes its appearance in Lathyrus sativus seedlings after 24 h of seed germination reaches its highest level around 5–7 days, the cotyledons containing about 60% of the total activity in the seedlings at day 5. The cytosol enzyme was purified 977-fold from whole seedlings by steps involving manganese chloride treatment, ammonium sulphate and acetone fractionations, positive adsorption on alumina C-γ gel, DEAE-Sephadex chromatography followed by preparative disc gel electrophoresis. The enzyme was shown to be homogeneous by electrophoretic and immunological criteria, had a molecular weight of 220000 and appears to be a hexamer with identical subunits. The optimal pH and temperature for the enzyme activity were 8.5 and 45 °C respectively. The enzyme follows typical Michaelis-Menten kinetics with a Km value of 1.73 mM for arginine. Though Mn2+ at lower concentrations stimulated the enzyme activity, there was no dependence of the enzyme on any metal for the activity. The arginine decarboxylase of L. sativus is a sulfhydryl enzyme. The data on co-factor requirement, inhibition by carbonyl reagents, reducing agents and pyridoxal phosphate inhibitors, and a partial reversal by pyridoxal phosphate of inhibition by pyridoxal · HCl suggests that pyridoxal 5'-phosphate is involved as a co-factor for the enzyme. The enzyme activity was inhibited competitively by various amines including the product agmatine. Highest inhibition was obtained with spermine and arcain. The substrate analogue, l-canavanine, homologue l-homoarginine and other basic amino acids like l-lysine and l-ornithine inhibited the enzyme activity competitively, homoarginine being the most effective in this respect.
Resumo:
Fabrication of multilayer ultrathin composite films composed of nanosized titanium dioxide particles (P25, Degussa) and polyelectrolytes (PELs), such as poly(allyl amine hydrochloride) (PAH) and poly(styrene sulfonate sodium salt) (PSS), on glass substrates using the layer-by-layer (LbL) assembly technique and its potentia application for the photodegradation of rhodamine B under ultraviolet (UV) irradiation has been reported. The polyelectrolytes and TiO2 were deposited on glass substrates at pH 2.5 and the growth of the multilayers was studied using UV/vis speccrophotometer. Thicknes measurements of the films showed a linear increase in film thickness with increase in number of bilayers. The surface microstructure of the thin films was characterized by field emission scanning electron microscope. The ability of the catalysts immobilized by this technique was compared with TiO2 films prepared by drop casting and spin coating methods. Comparison has been made in terms of film stability and photodegradation of rhodamine B. Process variables such as the effect of surface area of the multilayers, umber of bilayers, and initial dye concentration on photodegradation of rhodamine B were studied. Degradation efficiency increased with increase in number of catalysts (total surface area) and bilayers. Kinetics analysis indicated that the photodegradation rates follow first order kinetics. Under maximum loading of TiO2, with five catalyst slides having 20 bilayers of polyelectrolyte/TiO2 on each, 100 mL of 10 mg/L dye solution could be degraded completely in 4 h. The same slides could be reused with the same efficiency for several cycles. This study demonstrates that nanoparticles can be used in wastewater treatment using a simple immobilization technique. This makes the process an attractive option for scale up.
Resumo:
The kinetics of thermal degradation of poly(vinyl chloride) (PVC) in solution was investigated at various temperatures (210-250degreesC). The degradation rate coefficients were determined from the time evolution of the molecular weight distribution (MWD). The energy of activation, determined from the temperature dependence of the rate coefficient, was 26.6 kcal/mol. The degradation of PVC was also studied in the presence of a catalyst (HZSM-5 zeolite). The results indicated that increase of the degradation rate of PVC is first order with the HZSM-5 concentration up to 50 g/L and zero order at higher concentrations. The thermal degradation kinetics of PVC in the presence of 50 g/L of the catalyst was studied at various temperatures. The temperature dependency of the rate coefficient was used to calculate the activation energy (21.5 kcal/mol). This is consistent with the observation that the presence of a catalyst generally decreases the activation energy and promotes degradation. (C) 2002 John Wiley Sons, Inc.
Resumo:
In literature we find broadly two types of shape memory alloy based motors namely limited rotation motor and unlimited rotation motor. The unlimited rotation type SMA based motor reported in literature uses SMA springs for actuation. An attempt has been made in this paper to develop an unlimited rotation type balanced poly phase motor based on SMA wire in series with a spring in each phase. By isolating SMA actuation and spring action we are able achieve a constant force by the SMA wire through out its range of operation. The Poly phase motor can be used in stepping mode for generating incremental motion and servo mode for generating continuous motion. A method of achieving servo motion by micro stepping is presented. Micro stepping consists of controlling single-phase temperature with a position feedback. The motor has been modeled with a new approach to the SMA wire Hysterysis model. Motor is simulated for different responses and the results are compared with the experimental data.
Resumo:
The effect of non-planarity of the peptide unit on helical structures stabilized by intrachain hydrogen bonds is discussed. While the present calculations generally agree with those already reported in the literature for right-handed helical structures, it is found that the most stable left-handed structure is a novel helix, called the delta-helix. Its helical parameters are close to these reported for poly-beta-benzyl-L -aspartate. Conformational energy calculations show that poly-beta-benzyl-L -aspartate with the delta-helical structure is considerably more stable than the structure it is generally believed to take up (the omega-helix) by about 15 kcal/mol-residue.
Resumo:
Poly (beta-L-malic acid) (PMLA) is a biodegradable polymer and it has various important applications in the biomedical field. In the present work the structural and spectral characteristics of PMLA have been studied by methods of infrared. Raman spectroscopy and quantum chemistry. Electrostatic potential surface, optimized geometry, harmonic vibrational frequencies, infrared intensities and activities of Raman scattering were calculated by density functional theory (DFT) using oligomeric approach employing B3LYP with complete relaxation in the potential energy surface using 6-311++G (d, p) basis set. Based on results, we have discussed the correlation between the vibrational modes and the structure of the PMLA. A complete analysis of the experimental infrared and Raman spectra has been reported on the basis of wavenumber of the vibrational bands and potential energy distribution. The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. The calculated infrared and the Raman spectra of the polymer based on DFT calculations show reasonable agreement with the experimental results. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
New ternary copper (II) complexes, Cu(L-orn)(B)(Cl)](Cl center dot 2H(2)O) (1-2) where L-orn is L-ornithine, B is an N,N-donor heterocyclic base, viz. 2,2'-bipyridine (bpy, 1) and 1,10-phenanthroline (phen, 2), were synthesized and characterized by various spectroscopic techniques. Complex 2 is characterized by the X-ray single crystallographic method. The complex shows a distorted square-pyramidal (4 + 1) CuN3OCl coordination sphere. Binding interactions of the complexes with calf thymus DNA (CT-DNA) were investigated by UV-Vis absorption titration, ethidium bromide displacement assay, viscometric titration experiment and DNA melting studies. Complex 2 shows appreciable chemical nuclease activity in the presence of 3-mercaptopropionic acid (MPA). The complexes were subjected to in vitro cytotoxicity studies against carcinomic human alveolar basal epithelial cells (A-549) and human epithelial (HEp-2) cells. The IC50 values of 1 and 2 are less than that of cisplatin against HEp-2 cell lines. MIC values for 1 against the bacterial strains Streptococcus mutans and Pseudomonas aeruginosa are 0.5 mM. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Copper(II) complexes of ferrocene(Fc)-conjugated reduced Schiff base of L-tyrosine (Fc-TyrH), viz., Cu(Fc-Tyr)(L)](ClO4), where L is 1,10-phenanthroline (phen, 1), dipyrido3,2-d:2',3'-f]quinoxaline (dpq, 2), dipyrido3,2-a:2',3'-c]phenazine (dppz, 3) and 2-(naphthalen-1-yl)-1H-imidazo4,5-f]1,10]phenanthroline (nip, 4), were prepared and tested for their photocytotoxicity in cancer cells. Cu(Fc-Phe)(phen)](-ClO4) (5) of L-phenylalanine and Cu(Ph-Tyr)(L)(ClO4)] of the reduced Schiff base Ph-TyrH derived from benzaldehyde and L-tyrosine having phen (6) and dppz (7), and Cu(Ph-Phe)(phen)(ClO4)] (8) using L-phenylalanine were prepared and used as controls. Complexes 5 and 6 were structurally characterized by X-ray crystallography. A copper(II)-based d-d band near 600 nm and a ferrocenyl band at similar to 450 nm were observed in DMF-Tris-HCI buffer (1:4 v/v) in respective complexes. The complexes are photocleavers of pUC19 DNA in visible light forming (OH)-O-center dot radicals. They are cytotoxic in HeLa (human cervical cancer) and MCF-7 (human breast cancer) cells showing an enhancement of cytotoxicity in visible light. Fluorescence imaging shows nuclear localization of the complexes.
Resumo:
The carrier density dependent current-voltage (J V) characteristics of electrochemically prepared poly(3-methylthiophene) (P3MeT) have been investigated in Pt/P3MeT/Al devices, as a function of temperature from 280 to 84 K. In these devices, the charge transport is found to be mainly governed by different transport regimes of space charge limited conduction (SCLC). In a lightly doped device, SCLC controlled by exponentially distributed traps (Vl+1 law, l > 1) is observed in the intermediate voltage range (0.5-2 V) at all temperatures. However, at higher bias (> 2 V), the current deviates from the usual Vl+1 law where the slope is found to be less than 2 of the logJ-logV plot, which is attributed to the presence of the injection barrier. These deviations gradually disappear at higher doping level due to reduction in the injection barrier. Numerical simulations of the Vl+1 law by introducing the injection barrier show good agreement with experimental data. The results show that carrier density can tune the charge transport mechanism in Pt/P3MeT/Al devices to understand the non-Ohmic behavior. The plausible reasons for the origin of injection barrier and the transitions in the transport mechanism with carrier density are discussed. (C) 2015 AIP Publishing LLC.
Resumo:
Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).
Resumo:
Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).
Resumo:
Study on the biomarkers types to assess health status of marine ecosystems in environmental biomonitoring has an important value. Accordingly, accumulation of polycyclic aromatic hydrocarbons(PAHs) in sediment, water and tissues (liver and gill) of mudskipper(i.e. Boleophthalmus dussumieri) and some physiological responses like lysosomal membrane change performed on haemocytes, stability of red blood cell membrane and the Glutathione-S Transferase (GST) activity in the liver were measured in mudskipper. Samples were obtained from five sites along north western coast of the Persian Gulf (Khuzestan coast). Red blood cell membrane changes after different concentration of PAHs at different time was also studied to evaluate impact of PAHs compound on cell membrane. PAHs concentration was measured by HPLC method. The activity of GST enzyme was analysed by spectrophotometric method. Lysosomal membrane change was measured by NRR time method and stability of red blood cell membrane was evaluated by EOF test. Total PAH concentrations in the coastal sea water, the sediments, the liver and the gill tissues ranged between 0.80-18.34 μg/l, 113.50-3384.34 ng g-1 (dry weight), 3.99-46.64 ng g-1 dw and 3.11-17.76 ng g-1 dw, respectively. Highest PAHs pollution was found at Jafari while the lowest was detected at Bahrakan sampling sites. The lowest enzymatic activity was identified at Bahrakan (7.19 ± 1.541 nmol/mg protein/min), while the highest was recorded at Jafari (46.96 ± 7.877 nmol/mg protein/min). Comparative analysis of GST activity in the liver of mudskippers showed significant difference (p < 0.05) between the locations of Jafari and Bahrakan, and with other sites. Moreover, no significant difference was detected between the locations of Arvand, Zangi and Samayeli (p < 0.05). The mean RT was below 90 minutes in all sampling sites. Values of mean RT of the dye ranged from 34 (for the blood samples of mudskipper collected from Jafari site) to 78 minutes (for the blood samples of mudskipper collected from Bahrakan site). Spatial evaluation revealed the longest RT in fish from Bahrakan as compared with those from other sites. Preliminary results showed a significant difference (p < 0.05) among sampling sites except between Arvand and Zangi (p > 0.05). Osmotic fragility curves indicated that erythrocytes collected from mudskippers at Jafari were the most 009 fragile followed by Zangi> Arvand> Samayeli> and Bahrakan. The mean erythrocyte fragility was significantly higher at Jafari site (p < 0.05) when compared to other sites. Significant differences were found between the various sites (p < 0.05).The result indicated no significant differences between the control and treatments of mudskipper RBC exposed to field concentrations of PAHs (P>0.05). The results further indicated significant differences (P<0.05) between the control and treatments of mudskipper RBC exposed to acute. Potency Divisor concentrations. It is clear from the present result that chronic. Potency Divisor concentrations protect red cells against osmotic hemolysis. This study, however, showed that PAH concentrations in this region are not higher than the available standards. The findings showed that Lysosomal membrane destabilization, liver GST activities and fragility of red cell membrane are highly sensitive in the mudskipper, B. dussumieri. Thus, mudskipper perceived to be good sentinel organisms for PAH pollution monitoring. Sediment PAH concentrations were strongly correlated with biomarkers, indicating that PAH type pollutants were biologically available to fish. One of the possible risk assessment implications of this study is that biomarkers can be applied not only to characterize biological effects of pollution exposures, but also to determine the bioavailability of pollution in aquatic systems. The results also indicated that PAHs compound possess anti haemolytic property.