911 resultados para poly(propylene oxide-b-ethylene oxide)
Resumo:
The present study examined the mechanism by which bacterial cell walls from two gram-positive meningeal pathogens, Streptococcus pneumoniae and the group B streptococcus, induced neuronal injury in primary cultures of rat brain cells. Cell walls from both organisms produced cellular injury to similar degrees in pure astrocyte cultures but not in pure neuronal cultures. Cell walls also induced nitric oxide production in cultures of astrocytes or microglia. When neurons were cultured together with astrocytes or microglia, the cell walls of both organisms became toxic to neurons. L-NAME, a nitric oxide synthase inhibitor, protected neurons from cell wall-induced toxicity in mixed cultures with glia, as did dexamethasone. In contrast, an excitatory amino acid antagonist (MK801) had no effect. Low concentrations of cell walls from either gram-positive pathogen added together with the excitatory amino acid glutamate resulted in synergistic neurotoxicity that was inhibited by L-NAME. The induction of nitric oxide production and neurotoxicity by cell walls was independent of the presence of serum, whereas endotoxin exhibited these effects only in the presence of serum. We conclude that gram-positive cell walls can cause toxicity in neurons by inducing the production of nitric oxide in astrocytes and microglia.
Resumo:
Nitric oxide has the potential to greatly improve intravascular measurements by locally inhibiting thrombus formation and dilating blood vessels. pH, the partial pressure of oxygen, and the partial pressure of carbon dioxide are three arterial blood parameters that are of interest to clinicians in the intensive care unit that can benefit from an intravascular sensor. This work explores fabrication of absorbance and fluorescence based pH sensing chemistry, the sensing chemistries' compatibility with nitric oxide, and a controllable nitric oxide releasing polymer. The pH sensing chemistries utilized various substrates, dyes, and methods of immobilization. Absorbance sensing chemistries used sol-gels, fumed silica particles, mesoporous silicon oxide, bromocresol purple, phenol red, bromocresol green, physical entrapment, molecular interactions, and covalent linking. Covalently linking the dyes to fumed silica particles and mesoporous silicon oxide eliminated leaching in the absorbance sensing chemistries. The structures of the absorbance dyes investigated were similar and bromocresol green in a sol-gel was tested for compatibility with nitric oxide. Nitric oxide did not interfere with the use of bromocresol green in a pH sensor. Investigated fluorescence sensing chemistries utilized silica optical fibers, poly(allylamine) hydrogel, SNARF-1, molecular interactions, and covalent linking. SNARF-1 covalently linked to a modified poly(allylamine) hydrogel was tested in the presence of nitric oxide and showed no interference from the nitric oxide. Nitric oxide release was controlled through the modulation of a light source that cleaved the bond between the nitric oxide and a sulfur atom in the donor. The nitric oxide donor in this work is S-nitroso-N-acetyl-D-penicillamine which was covalently linked to a silicone rubber made from polydimethylsiloxane. It is shown that the surface flux of nitric oxide released from the polymer films can be increased and decreased by increasing and decreasing the output power of the LED light source. In summary, an optical pH sensing chemistry was developed that eliminated the chronic problem of leaching of the indicator dye and showed no reactivity to nitric oxide released, thereby facilitating the development of a functional, reliable intravascular sensor.
Resumo:
Although neuronal nitric oxide synthase (nNOS) plays a substantial role in skeletal muscle physiology, nNOS-knockout mice manifest an only mild phenotypic malfunction in this tissue. To identify proteins that might be involved in adaptive responses in skeletal muscle of knockout mice lacking nNOS, 2D-PAGE with silver-staining and subsequent tandem mass spectrometry (LC-MS/MS) was performed using extracts of extensor digitorum longus muscle (EDL) derived from nNOS-knockout mice in comparison to C57Bl/6 control mice. Six proteins were significantly (P < or = 0.05) more highly expressed in EDL of nNOS-knockout mice than in that of C57 control mice, all of which are involved in the metabolism of reactive oxygen species (ROS). These included prohibitin (2.0-fold increase), peroxiredoxin-3 (1.9-fold increase), Cu(2+)/Zn(2+)-dependent superoxide dismutase (SOD; 1.9-fold increase), heat shock protein beta-1 (HSP25; 1.7-fold increase) and nucleoside diphosphate kinase B (2.6-fold increase). A significantly higher expression (4.1-fold increase) and a pI shift from 6.5 to 5.9 of peroxiredoxin-6 in the EDL of nNOS-knockout mice were confirmed by quantitative immunoblotting. The concentrations of the mRNA encoding five of these proteins (the exception being prohibitin) were likewise significantly (P < or = 0.05) higher in the EDL of nNOS-knockout mice. A higher intrinsic hydrogen peroxidase activity (P < or = 0.05) was demonstrated in EDL of nNOS-knockout mice than C57 control mice, which was related to the presence of peroxiredoxin-6. The treatment of mice with the chemical NOS inhibitor L-NAME for 3 days induced a significant 3.4-fold up-regulation of peroxiredoxin-6 in the EDL of C57 control mice (P < or = 0.05), but did not alter its expression in EDL of nNOS-knockout mice. ESR spectrometry demonstrated the levels of superoxide to be 2.5-times higher (P < or = 0.05) in EDL of nNOS-knockout mice than in C57 control mice while an in vitro assay based on the emission of 2,7-dichlorofluorescein fluorescence disclosed the concentration of ROS to be similar in both strains of mice. We suggest that the up-regulation of proteins that are implicated in the metabolism of ROS, particularly of peroxiredoxin-6, within skeletal muscles of nNOS-knockout mice functionally compensates for the absence of nNOS in scavenging of superoxide.
Resumo:
BACKGROUND: Exhaled nitric oxide (FENO) is a marker for allergic airway inflammation. We wondered whether in patients with intermittent allergic rhinitis only (i) natural pollen exposure and (ii) artificial pollen exposure by repeated nasal allergen provocations may lead to an elevation of FENO. METHODS: In two prospective studies, we compared the FENO of nonatopic controls with the FENO of nonasthmatic individuals with mild intermittent rhinitis to tree and/or grass pollen. Study I: 13 atopic individuals and seven controls had measurements of FENO, blood eosinophils and eosinophilic cationic protein (ECP) before, during and after pollen season. Study II: 16 atopic individuals and 12 controls had nasal allergen provocations on four following days out of pollen season, with daily measurements of FENO before, 2 and 6 h after provocation, and determination of blood eosinophils, ECP and FEV1 at baseline, on days 5 and 10-12. RESULTS: Natural pollen exposure (study I) caused a significant elevation of FENO in allergic individuals. Nasal allergen provocations (study II) did not elicit a statistically significant rise neither of FENO nor of blood eosinophils between baseline and day 5. However, a subgroup of four individuals with a rise of blood eosinophils during nasal allergen provocations showed also a rise of FENO. CONCLUSIONS: We suppose that in allergic rhinitis a concomitant reaction of the bronchial system is dependent on a strong local inflammation leading to a generalized immune stimulation.
Resumo:
A poly(ethylene glycol) (PEG)-based hydrogel was used as a scaffold for chondrocyte culture. Branched PEG-vinylsulfone macromers were end-linked with thiol-bearing matrix metalloproteinase (MMP)-sensitive peptides (GCRDGPQGIWGQDRCG) to form a three-dimensional network in situ under physiologic conditions. Both four- and eight-armed PEG macromer building blocks were examined. Increasing the number of PEG arms increased the elastic modulus of the hydrogels from 4.5 to 13.5 kPa. PEG-dithiol was used to prepare hydrogels that were not sensitive to degradation by cell-derived MMPs. Primary bovine calf chondrocytes were cultured in both MMP-sensitive and MMP-insensitive hydrogels, formed from either four- or eight-armed PEG. Most (>90%) of the cells inside the gels were viable after 1 month of culture and formed cell clusters. Gel matrices with lower elastic modulus and sensitivity to MMP-based matrix remodeling demonstrated larger clusters and more diffuse, less cell surface-constrained cell-derived matrix in the chondron, as determined by light and electron microscopy. Gene expression experiments by real-time RT-PCR showed that the expression of type II collagen and aggrecan was increased in the MMP-sensitive hydrogels, whereas the expression level of MMP-13 was increased in the MMP-insensitive hydrogels. These results indicate that cellular activity can be modulated by the composition of the hydrogel. This study represents one of the first examples of chondrocyte culture in a bioactive synthetic material that can be remodeled by cellular protease activity.
Resumo:
Despite enormous research in the field of hypertension, its pathophysiology still remains largely unresolved and appears to be multifactorial. In the present communication, we have analyzed the status of nitric oxide (NO) in the patients with essential hypertension and age matched controls. We have found that the levels of NO are lowered in essential hypertension. The normalization of blood pressure by administration of antihypertensive therapy causes rise in the NO level indicating that perturbed NO status in essential hypertension is reversible. Addition of antioxidant to the antihypertensive drugs causes a further, though non significant, rise in the levels of NO, suggesting that antioxidants may be combined with antihypertensive drugs as adjunct in the management of essential hypertension.
Resumo:
Fluorine-rich prismatine, (square,Fe,Mg)(Mg,Al,Fe)(5)Al-4(Si,B,Al)(5)O-21(OH,F), with F/(OH+F) = 0.36-0.40 and hercynite are major constituents of a Fe-Al-B-rich lens in ultrahigh-temperature granulite-facies quartz-sillimanite-hypersthene-cordierite gneisses of the Eastern Ghats belt, Andhra Pradesh, India. Hemo-ilmenite. sapphirine, magnetite, biotite and sillimanite are subordinate. Lithium, Be and B are concentrated in prismatine (140 ppm Li, 170 ppm Be, and 2.8-3.0 wt.% B2O3). Another Fe-rich lens is dominantly magnetite, which encloses fine-grained zincian ferrohogbomite-2N2S, (Fe2+ Mg,Zn,Al)(6) (Al,Fe3+,Ti)(16)O-30(OH)(2), containing minor Ga2O3 (0.30-0.92 wt.%). Fe-Al-B-rich lenses with prismatine (or kornerupine) constitute a distinctive type of B-enrichment in granulite-facies rocks and have been reported from four other localities worldwide. A scenario involving a tourmaline-enriched lateritic precursor affected by dehydration melting is our preferred explanation for the origin of the Fe-Al-B-rich lenses at the five localities. Whole-rock analyses and field relationships at another of these localities, Bok se Puts, Namaqualand, South Africa, are consistent with this scenario. Under granulite-facies conditions, tourmaline would have broken down to give korner-upine-prismatine ( other borosilicates) plus a sodic melt containing H2O and B. Removal of this melt depleted the rock in Na and B, but the formation of ferromagnesian borosilicate phases in the restite prevented total loss of B.
Resumo:
A large family of bifunctional 1,2,4-triazole molecular tectons (tr) has been explored for engineering molybdenum(VI) oxide hybrid solids. Specifically, tr ligands bearing auxiliary basic or acidic groups were of the type amine, pyrazole, 1H-tetrazole, and 1,2,4-triazole. The organically templated molybdenum(VI) oxide solids with the general compositions [MoO3(tr)], [Mo2O6(tr)], and [Mo2O6(tr)(H2O)2] were prepared under mild hydrothermal conditions or by refluxing in water. Their crystal structures consist of zigzag chains, ribbons, or helixes of alternating cis-{MoO4N2} or {MoO5N} polyhedra stapled by short [N–N]-tr bridges that for bitriazole ligands convert the motifs into 2D or 3D frameworks. The high thermal (235–350 °C) and chemical stability observed for the materials makes them promising for catalytic applications. The molybdenum(VI) oxide hybrids were successfully explored as versatile oxidation catalysts with tert-butyl hydroperoxide (TBHP) or aqueous H2O2 as an oxygen source, at 70 °C. Catalytic performances were influenced by the different acidic–basic properties and steric hindrances of coordinating organic ligands as well as the structural dimensionality of the hybrid.
Resumo:
Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd(-/-)) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd(-/-) mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd(-/-) mice. These changes were reduced in DiNOS, and compared with Sftpd(-/-) mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd(-/-). Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces.
Resumo:
A limiting factor in the accuracy and precision of U/Pb zircon dates is accurate correction for initial disequilibrium in the 238U and 235U decay chains. The longest-lived-and therefore most abundant-intermediate daughter product in the 235U isotopic decay chain is 231Pa (T1/2 = 32.71 ka), and the partitioning behavior of Pa in zircon is not well constrained. Here we report high-precision thermal ionization mass spectrometry (TIMS) U-Pb zircon data from two samples from Ocean Drilling Program (ODP) Hole 735B, which show evidence for incorporation of excess 231Pa during zircon crystallization. The most precise analyses from the two samples have consistent Th-corrected 206Pb/238U dates with weighted means of 11.9325 ± 0.0039 Ma (n = 9) and 11.920 ± 0.011 Ma (n = 4), but distinctly older 207Pb/235U dates that vary from 12.330 ± 0.048 Ma to 12.140 ± 0.044 Ma and 12.03 ± 0.24 to 12.40 ± 0.27 Ma, respectively. If the excess 207Pb is due to variable initial excess 231Pa, calculated initial (231Pa)/(235U) activity ratios for the two samples range from 5.6 ± 1.0 to 9.6 ± 1.1 and 3.5 ± 5.2 to 11.4 ± 5.8. The data from the more precisely dated sample yields estimated DPazircon/DUzircon from 2.2-3.8 and 5.6-9.6, assuming (231Pa)/(235U) of the melt equal to the global average of recently erupted mid-ocean ridge basaltic glasses or secular equilibrium, respectively. High precision ID-TIMS analyses from nine additional samples from Hole 735B and nearby Hole 1105A suggest similar partitioning. The lower range of DPazircon/DUzircon is consistent with ion microprobe measurements of 231Pa in zircons from Holocene and Pleistocene rhyolitic eruptions (Schmitt (2007; doi:10.2138/am.2007.2449) and Schmitt (2011; doi:10.1146/annurev-earth-040610-133330)). The data suggest that 231Pa is preferentially incorporated during zircon crystallization over a range of magmatic compositions, and excess initial 231Pa may be more common in zircons than acknowledged. The degree of initial disequilibrium in the 235U decay chain suggested by the data from this study, and other recent high precision datasets, leads to resolvable discordance in high precision dates of Cenozoic to Mesozoic zircons. Minor discordance in zircons of this age may therefore reflect initial excess 231Pa and does not require either inheritance or Pb loss.
Resumo:
Dansgaard-Oeschger (D-O) cycles in sediment at Site 1063 are characterized by distinct fluctuations in physical properties. Stadials are marked by low bulk density and interstadials by high bulk density. Compressional (P-)wave velocity is in phase with bulk density over some but not all depth intervals. Four of the D-O cycles straddling the oxygen isotope Stage 4/5 boundary have been studied in detail to understand the origin of the physical properties changes. Sediment on the Bermuda Rise is comprised of three main components: calcite, aluminosilicate minerals, and biogenic silica. Calcite concentrations vary from 1% to 43% of bulk sediment and are highest during interstadials. Aluminosilicate concentrations vary from 52% to 92% of bulk sediment and are highest during stadials. The major element ratios Al2O3/TiO2 and K2O/Al2O3 show increases across bulk density cycles, suggesting a change in the composition of aluminosilicates. This interpretation is supported by mineralogical analyses, which show a subtle change in clay composition. Biogenic silica concentrations vary from 0% to 23% of bulk sediment and are also highest during stadials. However, the abundance of silica varies significantly from one D-O cycle to another. Silt and fine sand abundance also increase during the first of the four stadials. This coarsening of sediment coincides with the increase in biogenic silica. The low grain density and high porosity associated with biogenic silica result in intervals of low bulk-sediment density. The abundance of biogenic silica closely matches P-wave velocity, suggesting that silica imparts a greater rigidity to the sediment.