950 resultados para pollen and vegetation
Resumo:
This thesis assesses relationships between vegetation and topography and the impact of human tree-cutting on the vegetation of Union County during the early historical era (1755-1855). I use early warrant maps and forestry maps from the Pennsylvania historical archives and a warrantee map from the Union County courthouse depicting the distribution of witness trees and non-tree surveyed markers (posts and stones) in early European settlement land surveys to reconstruct the vegetation and compare vegetation by broad scale (mountains and valleys) and local scale (topographic classes with mountains and valleys) topography. I calculated marker density based on 2 km x 2 km grid cells to assess tree-cutting impacts. Valleys were mostly forests dominated by white oak (Quercus alba) with abundant hickory (Carya spp.), pine (Pinus spp.), and black oak (Quercus velutina), while pine dominated what were mostly pine-oak forests in the mountains. Within the valleys, pine was strongly associated with hilltops, eastern hemlock (Tsuga canadensis) was abundant on north slopes, hickory was associated with south slopes, and riparian zones had high frequencies of ash (Fraxinus spp.) and hickory. In the mountains, white oak was infrequent on south slopes, chestnut (Castanea dentata) was more abundant on south slopes and ridgetops than north slopes and mountain coves, and white oak and maple (Acer spp.) were common in riparian zones. Marker density analysis suggests that trees were still common over most of the landscape by 1855. The findings suggest there were large differences in vegetation between valleys and mountains due in part to differences in elevation, and vegetation differed more by topographic classes in the valleys than in the mountains. Possible areas of tree-cutting were evenly distributed by topographic classes, suggesting Europeans settlers were clearing land and harvesting timber in most areas of Union County.
Resumo:
Urban agriculture is a phenomenon that can be observed world-wide, particularly in cities of devel- oping countries. It is contributing significantly to food security and food safety and has sustained livelihood of the urban and peri-urban low income dwe llers in developing countries for many years. Population increase due to rural-urban migration and natural - formal as well as informal - urbani- sation are competing with urban farming for available space and scarce water resources. A mul- titemporal and multisensoral urban change analysis over the period of 25 years (1982-2007) was performed in order to measure and visualise the urban expansion along the Kizinga and Mzinga valley in the south of Dar Es Salaam. Airphotos and VHR satellite data were analysed by using a combination of a composition of anisotropic textural measures and spectral information. The study revealed that unplanned built-up area is expanding continuously, and vegetation covers and agricultural lands decline at a fast rate. The validation showed that the overall classification accuracy varied depending on the database. The extracted built-up areas were used for visual in- terpretation mapping purposes and served as information source for another research project. The maps visualise an urban congestion and expansion of nearly 18% of the total analysed area that had taken place in the Kizinga valley between 1982 and 2007. The same development can be ob- served in the less developed and more remote Mzinga valley between 1981 and 2002. Both areas underwent fast changes where land prices still tend to go up and an influx of people both from rural and urban areas continuously increase the density with the consequence of increasing multiple land use interests.
Resumo:
Forest fires play a key role in the global carbon cycle and thus, can affect regional and global climate. Although fires in extended areas of Russian boreal forests have a considerable influence on atmospheric greenhouse gas and soot concentrations, estimates of their impact on climate are hampered by a lack of data on the history of forest fires. Especially regions with strong continental climate are of high importance due to an intensified development of wildfires. In this study we reconstruct the fire history of Southern Siberia during the past 750 years using ice-core based nitrate, potassium, and charcoal concentration records from Belukha glacier in the continental Siberian Altai. A period of exceptionally high forest-fire activity was observed between AD 1600 and 1680, following an extremely dry period AD 1540-1600. Ice-core pollen data suggest distinct forest diebacks and the expansion of steppe in response to dry climatic conditions. Coherence with a paleoenvironmental record from the 200 km distant Siberian lake Teletskoye shows that the vegetational shift AD 1540-1680, the increase in fire activity AD 1600-1680, and the subsequent recovery of forests AD 1700 were of regional significance. Dead biomass accumulation in response to drought and high temperatures around AD 1600 probably triggered maximum forest-fire activity AD 1600-1680. The extreme dry period in the 16th century was also observed at other sites in Central Asia and is possibly associated with a persistent positive mode of the Pacific Decadal Oscillation (PDO). No significant increase in biomass burning occurred in the Altai region during the last 300 years, despite strongly increasing temperatures and human activities. Our results imply that precipitation changes controlled fire-regime and vegetation shifts in the Altai region during the past 750 years. We conclude that high sensitivity of ecosystems to occasional decadal-scale drought events may trigger unprecedented environmental reorganizations under global-warming conditions.
Resumo:
Natural methane (CH4) emissions from wet ecosystems are an important part of today's global CH4 budget. Climate affects the exchange of CH4 between ecosystems and the atmosphere by influencing CH4 production, oxidation, and transport in the soil. The net CH4 exchange depends on ecosystem hydrology, soil and vegetation characteristics. Here, the LPJ-WHyMe global dynamical vegetation model is used to simulate global net CH4 emissions for different ecosystems: northern peatlands (45°–90° N), naturally inundated wetlands (60° S–45° N), rice agriculture and wet mineral soils. Mineral soils are a potential CH4 sink, but can also be a source with the direction of the net exchange depending on soil moisture content. The geographical and seasonal distributions are evaluated against multi-dimensional atmospheric inversions for 2003–2005, using two independent four-dimensional variational assimilation systems. The atmospheric inversions are constrained by the atmospheric CH4 observations of the SCIAMACHY satellite instrument and global surface networks. Compared to LPJ-WHyMe the inversions result in a~significant reduction in the emissions from northern peatlands and suggest that LPJ-WHyMe maximum annual emissions peak about one month late. The inversions do not put strong constraints on the division of sources between inundated wetlands and wet mineral soils in the tropics. Based on the inversion results we diagnose model parameters in LPJ-WHyMe and simulate the surface exchange of CH4 over the period 1990–2008. Over the whole period we infer an increase of global ecosystem CH4 emissions of +1.11 Tg CH4 yr−1, not considering potential additional changes in wetland extent. The increase in simulated CH4 emissions is attributed to enhanced soil respiration resulting from the observed rise in land temperature and in atmospheric carbon dioxide that were used as input. The long-term decline of the atmospheric CH4 growth rate from 1990 to 2006 cannot be fully explained with the simulated ecosystem emissions. However, these emissions show an increasing trend of +3.62 Tg CH4 yr−1 over 2005–2008 which can partly explain the renewed increase in atmospheric CH4 concentration during recent years.
Resumo:
BACKGROUND: Eosinophilic esophagitis (EE) is often associated with concomitant atopic diseases. In children with EE in whom food allergens have been identified as causative factors, elemental and elimination diets result in an improvement or resolution of symptoms. Most adult EE patients are sensitized to aeroallergens, which cross-react with plant-derived food allergens, most commonly to grass pollen and cereals. AIMS OF THE STUDY: To investigate the clinical relevance of the sensitization to wheat and rye, and the efficacy of an allergen-specific elimination diet in adult EE patients. METHODS: Six patients (five men, one women) with permanently active EE sensitized to grass pollen and the cereals wheat and rye underwent a double-blind placebo-controlled food challenge and were kept on an elimination diet avoiding wheat and rye for 6 weeks. RESULTS: The challenge tests with wheat and rye did not provoke any EE symptoms in all patients. The elimination diet failed in reducing disease activity. Although one patient noticed an improvement of symptoms, endoscopic and histopathologic findings remained unchanged. CONCLUSIONS: In adult EE patients, sensitization to wheat and rye does not seem causative for EE. Elimination diet is not a reliable and efficient therapeutic measure in EE patients sensitized to wheat and rye. Low specific immunoglobulin-E levels to wheat and rye may be a consequence of the underlying grass pollen allergy.
Resumo:
Recent interest in spatial pattern in terrestrial ecosystems has come from an awareness of theintimate relationship between spatial heterogeneity of soil resources and maintenance of plant species diversity. Soil and vegetation can vary spatially inresponse to several state factors of the system. In this study, we examined fine-scale spatial variability of soil nutrients and vascular plant species in contrasting herb-dominated communities (a pasture and an oldfield) to determine degree of spatial dependenceamong soil variables and plant community characteristics within these communities by sampling at 1-m intervals. Each site was divided into 25 1-m 2 plots. Mineral soil was sampled (2-cm diameter, 5-cm depth) from each of four 0.25-m2 quarters and combined into a single composite sample per plot. Soil organic matter was measured as loss-on-ignition. Extractable NH4 and NO3 were determined before and after laboratory incubation to determine potential net N mineralization and nitrification. Cations were analyzed using inductively coupled plasma emission spectrometry. Vegetation was assessed using estimated percent cover. Most soiland plant variables exhibited sharp contrasts betweenpasture and old-field sites, with the old field having significantly higher net N mineralization/nitrification, pH, Ca, Mg, Al, plant cover, and species diversity, richness, and evenness. Multiple regressions revealedthat all plant variables (species diversity, richness,evenness, and cover) were significantly related to soil characteristics (available nitrogen, organic matter,moisture, pH, Ca, and Mg) in the pasture; in the old field only cover was significantly related to soil characteristics (organic matter and moisture). Both sites contrasted sharply with respect to spatial pattern of soil variables, with the old field exhibiting a higher degree of spatial dependence. These results demonstrate that land-use practices can exert profound influence on spatial heterogeneity of both soil properties and vegetation in herb-dominated communities.
Resumo:
Despite the important role of the Central Andes (15–30° S) for climate reconstruction, knowledge about the Quaternary glaciation is very limited due to the scarcity of organic material for radiocarbon dating. We applied 10Be surface exposure dating (SED) on 22 boulders from moraines in the Cordon de Doña Rosa, Northern/Central Chile (~31° S). The results show that several glacial advances in the southern Central Andes occurred during the Late Glacial between ~14.7±1.5 and 11.6±1.2 ka. A much more extensive glaciation is dated to ~32±3 ka, predating the temperature minimum of the global LGM (Last Glacial Maximum: ~20 ka). Reviewing these results in the paleoclimatic context, we conclude that the Late Glacial advances were most likely caused by an intensification of the tropical circulation and a corresponding increase in summer precipitation. High-latitude temperatures minima, e.g. the Younger Dryas (YD) and the Antarctic Cold Reversal (ACR) may have triggered individual advances, but current systematic exposure age uncertainties limit precise correlations. The absence of LGM moraines indicates that moisture advection was too limited to allow significant glacial advances at ~20 ka. The tropical circulation was less intensive despite the maximum in austral summer insolation. Winter precipitation was apparently also insufficient, although pollen and marine studies indicate a northward shift of the westerlies at that time. The dominant pre-LGM glacial advances in Northern/Central Chile at ~32 ka required lower temperatures and increased precipitation than today. We conclude that the westerlies were more intense and/or shifted equatorward, possibly due to increased snow and ice cover at higher southern latitudes coinciding with a minimum of insolation.
Resumo:
Riparian ecology plays an important part in the filtration of sediments from upland agricultural lands. The focus of this work makes use of multispectral high spatial resolution remote sensing imagery (Quickbird by Digital Globe) and geographic information systems (GIS) to characterize significant riparian attributes in the USDA’s experimental watershed, Goodwin Creek, located in northern Mississippi. Significant riparian filter characteristics include the width of the strip, vegetation properties, soil properties, topography, and upland land use practices. The land use and vegetation classes are extracted from the remotely sensed image with a supervised maximum likelihood classification algorithm. Accuracy assessments resulted in an acceptable overall accuracy of 84 percent. In addition to sensing riparian vegetation characteristics, this work addresses the issue of concentrated flow bypassing a riparian filter. Results indicate that Quickbird multispectral remote sensing and GIS data are capable of determining riparian impact on filtering sediment. Quickbird imagery is a practical solution for land managers to monitor the effectiveness of riparian filtration in an agricultural watershed.
Resumo:
Landscape structure and heterogeneity play a potentially important, but little understood role in predator-prey interactions and behaviourally-mediated habitat selection. For example, habitat complexity may either reduce or enhance the efficiency of a predator's efforts to search, track, capture, kill and consume prey. For prey, structural heterogeneity may affect predator detection, avoidance and defense, escape tactics, and the ability to exploit refuges. This study, investigates whether and how vegetation and topographic structure influence the spatial patterns and distribution of moose (Alces alces) mortality due to predation and malnutrition at the local and landscape levels on Isle Royale National Park. 230 locations where wolves (Canis lupus) killed moose during the winters between 2002 and 2010, and 182 moose starvation death sites for the period 1996-2010, were selected from the extensive Isle Royale Wolf-Moose Project carcass database. A variety of LiDAR-derived metrics were generated and used in an algorithm model (Random Forest) to identify, characterize, and classify three-dimensional variables significant to each of the mortality classes. Furthermore, spatial models to predict and assess the likelihood at the landscape scale of moose mortality were developed. This research found that the patterns of moose mortality by predation and malnutrition across the landscape are non-random, have a high degree of spatial variability, and that both mechanisms operate in contexts of comparable physiographic and vegetation structure. Wolf winter hunting locations on Isle Royale are more likely to be a result of its prey habitat selection, although they seem to prioritize the overall areas with higher moose density in the winter. Furthermore, the findings suggest that the distribution of moose mortality by predation is habitat-specific to moose, and not to wolves. In addition, moose sex, age, and health condition also affect mortality site selection, as revealed by subtle differences between sites in vegetation heights, vegetation density, and topography. Vegetation density in particular appears to differentiate mortality locations for distinct classes of moose. The results also emphasize the significance of fine-scale landscape and habitat features when addressing predator-prey interactions. These finer scale findings would be easily missed if analyses were limited to the broader landscape scale alone.
Resumo:
Our research explored the influence of deer and gap size on nitrogen cycling, soil compaction, and vegetation trajectories in twelve canopy gaps of varying sizes in a hemlock-northern hardwood forest. Each gap contained two fenced and two unfenced plots. Gap size, soil compaction, winter deer use, and available nitrogen were measured in 2011. Vegetation was assessed in 2007 and 2011, and non-metric multi-dimensional scaling was used to determine vegetative change. Results show that winter deer use was greater in smaller gaps. Deer accessibility did not influence compaction but did significantly increase total available nitrogen in April. April ammonium, April nitrate, and May nitrate were positively related to gap size. The relationship between gap size and vegetative community change was positive for fenced plots but unrelated for unfenced plots. In conclusion, deer are positively contributing to nitrogen dynamics and altering the relationship between canopy gap size and vegetative community change.
Resumo:
Northern wetlands, and particularly peatlands, have been shown to store around 30% of the world's soil carbon and thus play a significant role in the carbon cycle of our planet. Changes in climate are altering peatland hydrology and vegetation communities. These changes are possibly resulting in declines in the ability of peatlands to sequester carbon because losses through carbon oxidation and mineralization are likely to increase relative to C inputs from net primary production in a warmer, drier climate. However, the consequences of interactive effects of altered hydrology and vegetation on carbon storage are not well understood. This research evaluated the importance of plant species, water table, and their interactive effects on porewater quality in a northern peatland with an average pH of 4.54, ranging from 4.15 to 4.8. We assessed the effects of plant functional group (ericaceous shrubs, sedges, and bryophytes) and water table position on biogeochemical processes. Specifically, we measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), potential enzyme activity, organic acids, anions and cations, spectral indexes of aromaticity, and phenolic content. Our results indicate that acetate and propionate concentrations in the sedge-dominated communities declined with depth and water table drawdown, relative to the control and ericaceous treatments. DOC increased in the lowered water table treatments in all vegetation community types, and the peat porewater C:N ratio declined in the sedge-dominated treatments when the water table was lowered. The relationship between DOC and ferrous iron showed significant responses to vegetation type; the exclusion of Ericaceae resulted in less ferrous iron per unit DOC compared to mixed species treatments and Ericaceae alone. This observation was corroborated with higher mean oxidation redox potential profiles (integrating 20, 40, and 70 cm) measured in the sedge treatments, compared with the mixed and Ericaceae species treatments over a growing season. Enzymatic activities did not show as strong of a response to treatments as expected; the oxidative enzyme peroxidase and the hydrolytic enzyme phosphatase were the only enzymes to respond to water table, where the potential activity of both enzymes increased with water table drawdown. Overall, there were significant interactive effects between changes in vegetation and water table position on peat porewater composition. These data suggest that vegetation effects on oxidation reduction potentials and peat porewater character can be as important as water table position in northern bog ecosystems.
Resumo:
Since it is very toxic and accumulates in organisms, particularly in fish, mercury is a very important pollutant and one of the most studies. And this concern over the toxicity and human health risks of mercury has prompted efforts to regulate anthropogenic emissions. As mercury pollution problem is getting increasingly serious, we are curious about how serious this problem will be in the future. What is more, how the climate change in the future will affect the mercury concentration in the atmosphere. So we investigate the impact of climate change on mercury concentration in the atmosphere. We focus on the comparison between the mercury data for year 2000 and for year 2050. The GEOS-Chem model shows that the mercury concentrations for all tracers (1 to 3), elemental mercury (Hg(0)), divalent mercury (Hg(II)) and primary particulate mercury (Hg(P)) have differences between 2000 and 2050 in most regions over the world. From the model results, we can see the climate change from 2000 to 2050 would decrease Hg(0) surface concentration in most of the world. The driving factors of Hg(0) surface concentration changes are natural emissions(ocean and vegetation) and the transformation reactions between Hg(0) and Hg(II). The climate change from 2000 to 2050 would increase Hg(II) surface concentration in most of mid-latitude continental parts of the world while decreasing Hg(II) surface concentration in most of high-latitude part of the world. The driving factors of Hg(II) surface concentration changes is deposition amount change (majorly wet deposition) from 2000 to 2050 and the transformation reactions between Hg(0) and Hg(II). Climate change would increase Hg(P) concentration in most of mid-latitude area of the world and meanwhile decrease Hg(P) concentration in most of high-latitude regions of the world. For the Hg(P) concentration changes, the major driving factor is the deposition amount change (mainly wet deposition) from 2000 to 2050.
Resumo:
Humans colonized the Balearic Islands 5-4 ka ago. They arrived in a uniquely adapted ecosystem with the Balearic mountain goat Myotragus balearicus (Bovidae, Antilopinae, Caprini) as the only large mammal. This mammal went extinct rapidly after human arrival. Several hypotheses have been proposed to explain the extinction of M. balearicus. For the present study ancient DNA analysis (Sanger sequencing, Roche-454, Ion Torrent), and pollen and macrofossil analyses were performed on preserved coprolites from M. balearicus, providing information on its diet and paleo-environment. The information retrieved shows that M. balearicus was heavily dependent on the Balearic box species Buxus balearica during at least part of the year, and that it was most probably a browser. Hindcast ecological niche modelling of B. balearica shows that local distribution of this plant species was affected by climate changes. This suggests that the extinction of M. balearicus can be related to the decline and regional extinction of a plant species that formed a major component of its diet. The vegetation change is thought to be caused by increased aridity occurring throughout the Mediterranean. Previous hypotheses relating the extinction of M. balearicus directly to the arrival of humans on the islands must therefore be adjusted. (C) 2013 University of Washington. Published by Elsevier Inn All rights reserved.
Resumo:
Traditionally, desertification research has focused on degradation assessments, whereas prevention and mitigation strategies have not sufficiently been emphasised, although the concept of sustainable land management (SLM) is increasingly being acknowledged. SLM strategies are interventions at the local to regional scale aiming at increasing productivity, protecting the natural resource base, and improving livelihoods. The global WOCAT initiative and its partners have developed harmonized frameworks to compile, evaluate and analyse the impact of SLM practices around the globe. Recent studies within the EU research project DESIRE developed a methodological framework that combines a collective learning and decision-making approach with use of best practices from the WOCAT database. In-depth assessment of 30 technologies and 8 approaches from 17 desertification sites enabled an evaluation of how SLM addresses prevalent dryland threats such as water scarcity, soil and vegetation degradation, low production, climate change, resource use conflicts and migration. Among the impacts attributed to the documented technologies, those mentioned most were diversified and enhanced production and better management of water and soil degradation, whether through water harvesting, improving soil moisture, or reducing runoff. Water harvesting offers under-exploited opportunities for the drylands and the predominantly rainfed farming systems of the developing world. Recently compiled guidelines introduce the concepts behind water harvesting and propose a harmonised classification system, followed by an assessment of suitability, adoption and up-scaling of practices. Case studies go from large-scale floodwater spreading that make alluvial plains cultivable, to systems that boost cereal production in small farms, as well as practices that collect and store water from household compounds. Once contextualized and set in appropriate institutional frameworks, they can form part of an overall adaptation strategy for land users. More field research is needed to reinforce expert assessments of SLM impacts and provide the necessary evidence-based rationale for investing in SLM. This includes developing methods to quantify and value ecosystem services, both on-site and off-site, and assess the resilience of SLM practices, as currently aimed at within the new EU CASCADE project.
Resumo:
Paleoecology can provide valuable insights into the ecology of species that complement observation and experiment-based assessments of climate impact dynamics. New paleoecological records (e.g., pollen, macrofossils) from the Italian Peninsula suggest a much wider climatic niche of the important European tree species Abies alba (silver fir) than observed in its present spatial range. To explore this discrepancy between current and past distribution of the species, we analyzed climatic data (temperature, precipitation, frost, humidity, sunshine) and vegetation-independent paleoclimatic reconstructions (e.g., lake levels, chironomids) and use global coupled carbon-cycle climate (NCAR CSM1.4) and dynamic vegetation (LandClim) modeling. The combined evidence suggests that during the mid-Holocene (6000 years ago), prior to humanization of vegetation, A. alba formed forests under conditions that exceeded the modern (1961-1990) upper temperature limit of the species by 5-7°C (July means). Annual precipitation during this natural period was comparable to today (>700-800 mm), with drier summers and wetter winters. In the meso-Mediterranean to sub-Mediterranean forests A. alba co-occurred with thermophilous taxa such as Quercus ilex, Q. pubescens, Olea europaea, Phillyrea, Arbutus, Cistus, Tilia, Ulmus, Acer, Hedera helix, Ilex aquifolium, Taxus, and Vitis. Results from the last interglacial (ca. 130 000-115 000 BP), when human impact was negligible, corroborate the Holocene evidence. Thermophilous Mediterranean A. alba stands became extinct during the last 5000 years when land-use pressure and specifically excessive anthropogenic fire and browsing disturbance increased. Our results imply that the ecology of this key European tree species is not yet well understood. On the basis of the reconstructed realized climatic niche of the species, we anticipate that the future geographic range of A. alba may not contract regardless of migration success, even if climate should become significantly warmer than today with summer temperatures increasing by up to 5-7°C, as long as precipitation does not fall below 700-800 mm/yr, and anthropogenic disturbance (e.g., fire, browsing) does not become excessive. Our finding contradicts recent studies that projected range contractions under global-warming scenarios, but did not factor how millennia of human impacts reduced the realized climatic niche of A. alba.