864 resultados para pacs: data handling techniques
Resumo:
We consider the problem of stable determination of a harmonic function from knowledge of the solution and its normal derivative on a part of the boundary of the (bounded) solution domain. The alternating method is a procedure to generate an approximation to the harmonic function from such Cauchy data and we investigate a numerical implementation of this procedure based on Fredholm integral equations and Nyström discretization schemes, which makes it possible to perform a large number of iterations (millions) with minor computational cost (seconds) and high accuracy. Moreover, the original problem is rewritten as a fixed point equation on the boundary, and various other direct regularization techniques are discussed to solve that equation. We also discuss how knowledge of the smoothness of the data can be used to further improve the accuracy. Numerical examples are presented showing that accurate approximations of both the solution and its normal derivative can be obtained with much less computational time than in previous works.
Resumo:
Most of the existing work on information integration in the Semantic Web concentrates on resolving schema-level problems. Specific issues of data-level integration (instance coreferencing, conflict resolution, handling uncertainty) are usually tackled by applying the same techniques as for ontology schema matching or by reusing the solutions produced in the database domain. However, data structured according to OWL ontologies has its specific features: e.g., the classes are organized into a hierarchy, the properties are inherited, data constraints differ from those defined by database schema. This paper describes how these features are exploited in our architecture KnoFuss, designed to support data-level integration of semantic annotations.
Resumo:
We introduce a flexible visual data mining framework which combines advanced projection algorithms from the machine learning domain and visual techniques developed in the information visualization domain. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection algorithms, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates and billboarding, to provide a visual data mining framework. Results on a real-life chemoinformatics dataset using GTM are promising and have been analytically compared with the results from the traditional projection methods. It is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework. Copyright 2006 ACM.
Resumo:
One of the main challenges of classifying clinical data is determining how to handle missing features. Most research favours imputing of missing values or neglecting records that include missing data, both of which can degrade accuracy when missing values exceed a certain level. In this research we propose a methodology to handle data sets with a large percentage of missing values and with high variability in which particular data are missing. Feature selection is effected by picking variables sequentially in order of maximum correlation with the dependent variable and minimum correlation with variables already selected. Classification models are generated individually for each test case based on its particular feature set and the matching data values available in the training population. The method was applied to real patients' anonymous mental-health data where the task was to predict the suicide risk judgement clinicians would give for each patient's data, with eleven possible outcome classes: zero to ten, representing no risk to maximum risk. The results compare favourably with alternative methods and have the advantage of ensuring explanations of risk are based only on the data given, not imputed data. This is important for clinical decision support systems using human expertise for modelling and explaining predictions.
Resumo:
One of the greatest concerns related to the popularity of GPS-enabled devices and applications is the increasing availability of the personal location information generated by them and shared with application and service providers. Moreover, people tend to have regular routines and be characterized by a set of “significant places”, thus making it possible to identify a user from his/her mobility data. In this paper we present a series of techniques for identifying individuals from their GPS movements. More specifically, we study the uniqueness of GPS information for three popular datasets, and we provide a detailed analysis of the discriminatory power of speed, direction and distance of travel. Most importantly, we present a simple yet effective technique for the identification of users from location information that are not included in the original dataset used for training, thus raising important privacy concerns for the management of location datasets.
Resumo:
With the explosive growth of the volume and complexity of document data (e.g., news, blogs, web pages), it has become a necessity to semantically understand documents and deliver meaningful information to users. Areas dealing with these problems are crossing data mining, information retrieval, and machine learning. For example, document clustering and summarization are two fundamental techniques for understanding document data and have attracted much attention in recent years. Given a collection of documents, document clustering aims to partition them into different groups to provide efficient document browsing and navigation mechanisms. One unrevealed area in document clustering is that how to generate meaningful interpretation for the each document cluster resulted from the clustering process. Document summarization is another effective technique for document understanding, which generates a summary by selecting sentences that deliver the major or topic-relevant information in the original documents. How to improve the automatic summarization performance and apply it to newly emerging problems are two valuable research directions. To assist people to capture the semantics of documents effectively and efficiently, the dissertation focuses on developing effective data mining and machine learning algorithms and systems for (1) integrating document clustering and summarization to obtain meaningful document clusters with summarized interpretation, (2) improving document summarization performance and building document understanding systems to solve real-world applications, and (3) summarizing the differences and evolution of multiple document sources.
Resumo:
In order to optimize frontal detection in sea surface temperature fields at 4 km resolution, a combined statistical and expert-based approach is applied to test different spatial smoothing of the data prior to the detection process. Fronts are usually detected at 1 km resolution using the histogram-based, single image edge detection (SIED) algorithm developed by Cayula and Cornillon in 1992, with a standard preliminary smoothing using a median filter and a 3 × 3 pixel kernel. Here, detections are performed in three study regions (off Morocco, the Mozambique Channel, and north-western Australia) and across the Indian Ocean basin using the combination of multiple windows (CMW) method developed by Nieto, Demarcq and McClatchie in 2012 which improves on the original Cayula and Cornillon algorithm. Detections at 4 km and 1 km of resolution are compared. Fronts are divided in two intensity classes (“weak” and “strong”) according to their thermal gradient. A preliminary smoothing is applied prior to the detection using different convolutions: three type of filters (median, average and Gaussian) combined with four kernel sizes (3 × 3, 5 × 5, 7 × 7, and 9 × 9 pixels) and three detection window sizes (16 × 16, 24 × 24 and 32 × 32 pixels) to test the effect of these smoothing combinations on reducing the background noise of the data and therefore on improving the frontal detection. The performance of the combinations on 4 km data are evaluated using two criteria: detection efficiency and front length. We find that the optimal combination of preliminary smoothing parameters in enhancing detection efficiency and preserving front length includes a median filter, a 16 × 16 pixel window size, and a 5 × 5 pixel kernel for strong fronts and a 7 × 7 pixel kernel for weak fronts. Results show an improvement in detection performance (from largest to smallest window size) of 71% for strong fronts and 120% for weak fronts. Despite the small window used (16 × 16 pixels), the length of the fronts has been preserved relative to that found with 1 km data. This optimal preliminary smoothing and the CMW detection algorithm on 4 km sea surface temperature data are then used to describe the spatial distribution of the monthly frequencies of occurrence for both strong and weak fronts across the Indian Ocean basin. In general strong fronts are observed in coastal areas whereas weak fronts, with some seasonal exceptions, are mainly located in the open ocean. This study shows that adequate noise reduction done by a preliminary smoothing of the data considerably improves the frontal detection efficiency as well as the global quality of the results. Consequently, the use of 4 km data enables frontal detections similar to 1 km data (using a standard median 3 × 3 convolution) in terms of detectability, length and location. This method, using 4 km data is easily applicable to large regions or at the global scale with far less constraints of data manipulation and processing time relative to 1 km data.
Resumo:
Due to the growth of design size and complexity, design verification is an important aspect of the Logic Circuit development process. The purpose of verification is to validate that the design meets the system requirements and specification. This is done by either functional or formal verification. The most popular approach to functional verification is the use of simulation based techniques. Using models to replicate the behaviour of an actual system is called simulation. In this thesis, a software/data structure architecture without explicit locks is proposed to accelerate logic gate circuit simulation. We call thus system ZSIM. The ZSIM software architecture simulator targets low cost SIMD multi-core machines. Its performance is evaluated on the Intel Xeon Phi and 2 other machines (Intel Xeon and AMD Opteron). The aim of these experiments is to: • Verify that the data structure used allows SIMD acceleration, particularly on machines with gather instructions ( section 5.3.1). • Verify that, on sufficiently large circuits, substantial gains could be made from multicore parallelism ( section 5.3.2 ). • Show that a simulator using this approach out-performs an existing commercial simulator on a standard workstation ( section 5.3.3 ). • Show that the performance on a cheap Xeon Phi card is competitive with results reported elsewhere on much more expensive super-computers ( section 5.3.5 ). To evaluate the ZSIM, two types of test circuits were used: 1. Circuits from the IWLS benchmark suit [1] which allow direct comparison with other published studies of parallel simulators.2. Circuits generated by a parametrised circuit synthesizer. The synthesizer used an algorithm that has been shown to generate circuits that are statistically representative of real logic circuits. The synthesizer allowed testing of a range of very large circuits, larger than the ones for which it was possible to obtain open source files. The experimental results show that with SIMD acceleration and multicore, ZSIM gained a peak parallelisation factor of 300 on Intel Xeon Phi and 11 on Intel Xeon. With only SIMD enabled, ZSIM achieved a maximum parallelistion gain of 10 on Intel Xeon Phi and 4 on Intel Xeon. Furthermore, it was shown that this software architecture simulator running on a SIMD machine is much faster than, and can handle much bigger circuits than a widely used commercial simulator (Xilinx) running on a workstation. The performance achieved by ZSIM was also compared with similar pre-existing work on logic simulation targeting GPUs and supercomputers. It was shown that ZSIM simulator running on a Xeon Phi machine gives comparable simulation performance to the IBM Blue Gene supercomputer at very much lower cost. The experimental results have shown that the Xeon Phi is competitive with simulation on GPUs and allows the handling of much larger circuits than have been reported for GPU simulation. When targeting Xeon Phi architecture, the automatic cache management of the Xeon Phi, handles and manages the on-chip local store without any explicit mention of the local store being made in the architecture of the simulator itself. However, targeting GPUs, explicit cache management in program increases the complexity of the software architecture. Furthermore, one of the strongest points of the ZSIM simulator is its portability. Note that the same code was tested on both AMD and Xeon Phi machines. The same architecture that efficiently performs on Xeon Phi, was ported into a 64 core NUMA AMD Opteron. To conclude, the two main achievements are restated as following: The primary achievement of this work was proving that the ZSIM architecture was faster than previously published logic simulators on low cost platforms. The secondary achievement was the development of a synthetic testing suite that went beyond the scale range that was previously publicly available, based on prior work that showed the synthesis technique is valid.
Development of new scenario decomposition techniques for linear and nonlinear stochastic programming
Resumo:
Une approche classique pour traiter les problèmes d’optimisation avec incertitude à deux- et multi-étapes est d’utiliser l’analyse par scénario. Pour ce faire, l’incertitude de certaines données du problème est modélisée par vecteurs aléatoires avec des supports finis spécifiques aux étapes. Chacune de ces réalisations représente un scénario. En utilisant des scénarios, il est possible d’étudier des versions plus simples (sous-problèmes) du problème original. Comme technique de décomposition par scénario, l’algorithme de recouvrement progressif est une des méthodes les plus populaires pour résoudre les problèmes de programmation stochastique multi-étapes. Malgré la décomposition complète par scénario, l’efficacité de la méthode du recouvrement progressif est très sensible à certains aspects pratiques, tels que le choix du paramètre de pénalisation et la manipulation du terme quadratique dans la fonction objectif du lagrangien augmenté. Pour le choix du paramètre de pénalisation, nous examinons quelques-unes des méthodes populaires, et nous proposons une nouvelle stratégie adaptive qui vise à mieux suivre le processus de l’algorithme. Des expériences numériques sur des exemples de problèmes stochastiques linéaires multi-étapes suggèrent que la plupart des techniques existantes peuvent présenter une convergence prématurée à une solution sous-optimale ou converger vers la solution optimale, mais avec un taux très lent. En revanche, la nouvelle stratégie paraît robuste et efficace. Elle a convergé vers l’optimalité dans toutes nos expériences et a été la plus rapide dans la plupart des cas. Pour la question de la manipulation du terme quadratique, nous faisons une revue des techniques existantes et nous proposons l’idée de remplacer le terme quadratique par un terme linéaire. Bien que qu’il nous reste encore à tester notre méthode, nous avons l’intuition qu’elle réduira certaines difficultés numériques et théoriques de la méthode de recouvrement progressif.
Resumo:
This thesis presents a study of the Grid data access patterns in distributed analysis in the CMS experiment at the LHC accelerator. This study ranges from the deep analysis of the historical patterns of access to the most relevant data types in CMS, to the exploitation of a supervised Machine Learning classification system to set-up a machinery able to eventually predict future data access patterns - i.e. the so-called dataset “popularity” of the CMS datasets on the Grid - with focus on specific data types. All the CMS workflows run on the Worldwide LHC Computing Grid (WCG) computing centers (Tiers), and in particular the distributed analysis systems sustains hundreds of users and applications submitted every day. These applications (or “jobs”) access different data types hosted on disk storage systems at a large set of WLCG Tiers. The detailed study of how this data is accessed, in terms of data types, hosting Tiers, and different time periods, allows to gain precious insight on storage occupancy over time and different access patterns, and ultimately to extract suggested actions based on this information (e.g. targetted disk clean-up and/or data replication). In this sense, the application of Machine Learning techniques allows to learn from past data and to gain predictability potential for the future CMS data access patterns. Chapter 1 provides an introduction to High Energy Physics at the LHC. Chapter 2 describes the CMS Computing Model, with special focus on the data management sector, also discussing the concept of dataset popularity. Chapter 3 describes the study of CMS data access patterns with different depth levels. Chapter 4 offers a brief introduction to basic machine learning concepts and gives an introduction to its application in CMS and discuss the results obtained by using this approach in the context of this thesis.
Development of new scenario decomposition techniques for linear and nonlinear stochastic programming
Resumo:
Une approche classique pour traiter les problèmes d’optimisation avec incertitude à deux- et multi-étapes est d’utiliser l’analyse par scénario. Pour ce faire, l’incertitude de certaines données du problème est modélisée par vecteurs aléatoires avec des supports finis spécifiques aux étapes. Chacune de ces réalisations représente un scénario. En utilisant des scénarios, il est possible d’étudier des versions plus simples (sous-problèmes) du problème original. Comme technique de décomposition par scénario, l’algorithme de recouvrement progressif est une des méthodes les plus populaires pour résoudre les problèmes de programmation stochastique multi-étapes. Malgré la décomposition complète par scénario, l’efficacité de la méthode du recouvrement progressif est très sensible à certains aspects pratiques, tels que le choix du paramètre de pénalisation et la manipulation du terme quadratique dans la fonction objectif du lagrangien augmenté. Pour le choix du paramètre de pénalisation, nous examinons quelques-unes des méthodes populaires, et nous proposons une nouvelle stratégie adaptive qui vise à mieux suivre le processus de l’algorithme. Des expériences numériques sur des exemples de problèmes stochastiques linéaires multi-étapes suggèrent que la plupart des techniques existantes peuvent présenter une convergence prématurée à une solution sous-optimale ou converger vers la solution optimale, mais avec un taux très lent. En revanche, la nouvelle stratégie paraît robuste et efficace. Elle a convergé vers l’optimalité dans toutes nos expériences et a été la plus rapide dans la plupart des cas. Pour la question de la manipulation du terme quadratique, nous faisons une revue des techniques existantes et nous proposons l’idée de remplacer le terme quadratique par un terme linéaire. Bien que qu’il nous reste encore à tester notre méthode, nous avons l’intuition qu’elle réduira certaines difficultés numériques et théoriques de la méthode de recouvrement progressif.
Resumo:
Min/max autocorrelation factor analysis (MAFA) and dynamic factor analysis (DFA) are complementary techniques for analysing short (> 15-25 y), non-stationary, multivariate data sets. We illustrate the two techniques using catch rate (cpue) time-series (1982-2001) for 17 species caught during trawl surveys off Mauritania, with the NAO index, an upwelling index, sea surface temperature, and an index of fishing effort as explanatory variables. Both techniques gave coherent results, the most important common trend being a decrease in cpue during the latter half of the time-series, and the next important being an increase during the first half. A DFA model with SST and UPW as explanatory variables and two common trends gave good fits to most of the cpue time-series. (c) 2004 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
Resumo:
The dynamic interaction between building systems and external climate is extremely complex, involving a large number of difficult-to-predict variables. In order to study the impact of global warming on the built environment, the use of building simulation techniques together with forecast weather data are often necessary. Since all building simulation programs require hourly meteorological input data for their thermal comfort and energy evaluation, the provision of suitable weather data becomes critical. Based on a review of the existing weather data generation models, this paper presents an effective method to generate approximate future hourly weather data suitable for the study of the impact of global warming. Depending on the level of information available for the prediction of future weather condition, it is shown that either the method of retaining to current level, constant offset method or diurnal modelling method may be used to generate the future hourly variation of an individual weather parameter. An example of the application of this method to the different global warming scenarios in Australia is presented. Since there is no reliable projection of possible change in air humidity, solar radiation or wind characters, as a first approximation, these parameters have been assumed to remain at the current level. A sensitivity test of their impact on the building energy performance shows that there is generally a good linear relationship between building cooling load and the changes of weather variables of solar radiation, relative humidity or wind speed.
Resumo:
PURPOSE: To introduce techniques for deriving a map that relates visual field locations to optic nerve head (ONH) sectors and to use the techniques to derive a map relating Medmont perimetric data to data from the Heidelberg Retinal Tomograph. METHODS: Spearman correlation coefficients were calculated relating each visual field location (Medmont M700) to rim area and volume measures for 10 degrees ONH sectors (HRT III software) for 57 participants: 34 with glaucoma, 18 with suspected glaucoma, and 5 with ocular hypertension. Correlations were constrained to be anatomically plausible with a computational model of the axon growth of retinal ganglion cells (Algorithm GROW). GROW generated a map relating field locations to sectors of the ONH. The sector with the maximum statistically significant (P < 0.05) correlation coefficient within 40 degrees of the angle predicted by GROW for each location was computed. Before correlation, both functional and structural data were normalized by either normative data or the fellow eye in each participant. RESULTS: The model of axon growth produced a 24-2 map that is qualitatively similar to existing maps derived from empiric data. When GROW was used in conjunction with normative data, 31% of field locations exhibited a statistically significant relationship. This significance increased to 67% (z-test, z = 4.84; P < 0.001) when both field and rim area data were normalized with the fellow eye. CONCLUSIONS: A computational model of axon growth and normalizing data by the fellow eye can assist in constructing an anatomically plausible map connecting visual field data and sectoral ONH data.
Resumo:
This report reviews the selection, design, and installation of fiber reinforced polymer systems for strengthening of reinforced concrete or pre-stressed concrete bridges and other structures. The report is prepared based on the knowledge gained from worldwide experimental research, analytical work, and field applications of FRP systems used to strengthen concrete structures. Information on material properties, design and installation methods of FRP systems used as external reinforcement are presented. This information can be used to select an FRP system for increasing the strength and stiffness of reinforced concrete beams or the ductility of columns, and other applications. Based on the available research, the design considerations and concepts are covered in this report. In the next stage of the project, these will be further developed as design tools. It is important to note, however, that the design concepts proposed in literature have not in many cases been thoroughly developed and proven. Therefore, a considerable amount of research work will be required prior to development of the design concepts into practical design tools, which is a major goal of the current research project. The durability and long-term performance of FRP materials has been the subject of much research, which still are on going. Long-term field data are not currently available, and it is still difficult to accurately predict the life of FRP strengthening systems. The report briefly addresses environmental degradation and long-term durability issues as well. A general overview of using FRP bars as primary reinforcement of concrete structures is presented in Chapter 8. In Chapter 9, a summary of strengthening techniques identified as part of this initial stage of the research project and the issues which require careful consideration prior to practical implementation of these identified techniques are presented.