774 resultados para outlier detection, data mining, gpgpu, gpu computing, supercomputing
Resumo:
The number of digital images has been increasing exponentially in the last few years. People have problems managing their image collections and finding a specific image. An automatic image categorization system could help them to manage images and find specific images. In this thesis, an unsupervised visual object categorization system was implemented to categorize a set of unknown images. The system is unsupervised, and hence, it does not need known images to train the system which needs to be manually obtained. Therefore, the number of possible categories and images can be huge. The system implemented in the thesis extracts local features from the images. These local features are used to build a codebook. The local features and the codebook are then used to generate a feature vector for an image. Images are categorized based on the feature vectors. The system is able to categorize any given set of images based on the visual appearance of the images. Images that have similar image regions are grouped together in the same category. Thus, for example, images which contain cars are assigned to the same cluster. The unsupervised visual object categorization system can be used in many situations, e.g., in an Internet search engine. The system can categorize images for a user, and the user can then easily find a specific type of image.
Resumo:
Tämän tutkimuksen kohdeorganisaatio on suuren teollisuusyrityksen sisäinen raaka-aineen hankkija ja toimittaja. Tutkimuksessa selvitetään, mistä kohdeorganisaation hankinta-asiakkuuksien arvo muodostuu ja kuinka olemassa olevan liiketoimintadatan perusteella voidaan tutkia, arvioida ja luokitella kauppojen ja asiakkuuksien arvokkuutta aikaan sitomatta, objektiivisesti ja luotettavasti. Tutkimuksen teoriaosiossa esitellään lähestymistapoja ja menetelmiä, joiden avulla voidaan jalostaa olemassa olevasta datasta uutta sidosryhmätietämystä liiketoiminnan käyttöön, sekä tarkastellaan asiakaskannattavuusanalyysin, portfolioanalyysin, sekä asiakassegmentoinnin perusteita ja malleja. Näiden teorioiden ja mallien pohjalta rakennetaan kohdeorganisaatiolle räätälöity, indeksoituihin hinta-, määrä- ja kauppojen toistuvuus-muuttujiin perustuva, asiakkuuksien arvottamis- ja luokittelumalli. Arvottamis- ja luokittelumalli testataan vuosien 2003–2007 liiketoimintadatasta muodostetulla 389 336 kaupparivin otoksella, joka sisältää 42 186 arvioitavaa asiakkuussuhdetta. Merkittävin esille nouseva havainto on noin 5 000:n keskimääräistä selkeästi kalliimman asiakkuuden ryhmä. Aineisto ja sen poikkeavuudet testataan tilastollisin menetelmin, jotta saadaan selville asiakkuuden arvoon vaikuttavat ja arvoa selittävät tekijät. Lopuksi pohditaan arvottamismallin merkitystä analyyttisemman ostotoiminnan ja asiakkuudenhallinnan välineenä, sekä esitetään muutamia parannusehdotuksia.
Resumo:
La disciplina de l'Educational Data Mining and Learning Analytics té per objecte emprar els mètodes propis de la descoberta de coneixement en bases de dades i l'aprenentatge computacional amb la finalitat de comprendrei millorar, si s'escau, els processos que tenen lloc en entorns d'aprenentatge. En aquest estudi es parteix d'un registre d'establiment i clausura de sessions dels usuaris al Campus Virtual de la UOC per mirar d'obtenir resultats en aquesta direcció.
Resumo:
Recommender systems attempt to predict items in which a user might be interested, given some information about the user's and items' profiles. Most existing recommender systems use content-based or collaborative filtering methods or hybrid methods that combine both techniques (see the sidebar for more details). We created Informed Recommender to address the problem of using consumer opinion about products, expressed online in free-form text, to generate product recommendations. Informed recommender uses prioritized consumer product reviews to make recommendations. Using text-mining techniques, it maps each piece of each review comment automatically into an ontology
Resumo:
QSAR modeling is a novel computer program developed to generate and validate QSAR or QSPR (quantitative structure- activity or property relationships) models. With QSAR modeling, users can build partial least squares (PLS) regression models, perform variable selection with the ordered predictors selection (OPS) algorithm, and validate models by using y-randomization and leave-N-out cross validation. An additional new feature is outlier detection carried out by simultaneous comparison of sample leverage with the respective Studentized residuals. The program was developed using Java version 6, and runs on any operating system that supports Java Runtime Environment version 6. The use of the program is illustrated. This program is available for download at lqta.iqm.unicamp.br.
Resumo:
This study developed and validated a method for moisture determination in artisanal Minas cheese, using near-infrared spectroscopy and partial-least-squares. The model robustness was assured by broad sample diversity, real conditions of routine analysis, variable selection, outlier detection and analytical validation. The model was built from 28.5-55.5% w/w, with a root-mean-square-error-of-prediction of 1.6%. After its adoption, the method stability was confirmed over a period of two years through the development of a control chart. Besides this specific method, the present study sought to provide an example multivariate metrological methodology with potential for application in several areas, including new aspects, such as more stringent evaluation of the linearity of multivariate methods.
Resumo:
Business intelligencellä tarkoitetaan liiketoimintatiedon hallintaan liittyviä prosesseja ja tekniikoita. Se pitää sisällään tiedon keräämiseen, tallentamiseen, analysointiin ja jakamiseen käytettyt tuotteet, tekniikat ja prosessit, joiden tavoitteena on auttaa yrityksen työntekijöitä liiketoimintaan liittyvässä päätöksenteossa. Tutkimuksen tavoitteena on tutkia uuden yritysryhmän laajuisen BI-tietojärjestelmän suunnitteluun ja käyttöönotoon liittyviä seikkoja ja luoda valmiudet BI-tietojärjestelmän kehitys- ja käyttöönottoprojektin kohdeyrityksessä, jonka toimiala on kansainvälinen terveydenhoitoalan tukkuliiketoiminta. Uuden BI-järjestelmän halutaan tukeva yritysryhmän yritysten välistä integraatiota ja tehostavan tiedonhakuun ja analysointiin liittyviä prosesseja. Tutkimus toteutettiin konstruktiivisena tutkimuksena, joka kattaa kohdeyrityksen IT-arkkitehtuurin, tietosisällön, prosessit ja organisaation raportoinnin kannalta. Lisäksi työssä suoritettiin ohjelmistovertailu kahden markkinoilla toimivan merkittävän ohjelmistotalon BI-tuotteiden välillä. Työssä havaittiin, että BI-projekti on laaja-alainen ja suuri hanke, joka ulottuu läpi koko organisaation. BI-ohjelmiston tehokas hyödyntäminen asettaa vaatimuksia erityisesti taustajärjestelmien tiedon huolelliseen mallintamiseen liittyen. Työssä saatiin pilotoinnin kautta käytännön kokemuksia uudesta järjestelmästä ja sen tarjoamista mahdollisuuksista kohdeyrityksessä.
Resumo:
Työpaikkailmoitusten etsiminen internetistä on hyvin yleistä nykyään, mutta kysei- nen prosessi ei ole kehittynyt vuosien varrella muiden palvelujen tapaan. Tämän ta- kia tehokkaan ja omiin taitoihin kohdistetun haun tekeminen on hyvin vaikeaa. Tässä työssä toteutetaan verkkopalvelu, jonka avulla käyttäjä voi tutkia useasta läh- teestä haettuja IT-alan työpaikkailmoituksia ja etsiä niistä omille taidoilleen parhai- ten sopivia. Palvelun taustalla toimiva järjestelmä hakee ilmoitukset ja analysoi ne tarvittavan datan saamiseksi. Samalla ilmoituksista luodaan tilastoja, joita käyttäjät voivat tutkia. Kerätyistä tiedoista saadaan myös selville millaisia yhteyksiä eri am- mattien ja termien välillä on. Palvelun avulla on helppoa tehdä hakuja painottaen omia osaamisalueita. Haun tu- lokset tulostetaan parhaiten sopivasta huonoimmin sopivaan. Jokaisen ilmoituksen mukana tulostetaan listaus ilmoituksessa olleista ammattitermeistä ja jokaisen haun loppuun tulostetaan myös listaus kaikista haun tuloksista löytyneistä ilmoituksista. Kohdistetut haut ovat mahdollisia, koska palvelu kerää tietoja ilmoituksista löytyvis- tä termeistä luokitellen niitä. Tilastoista käyttäjällä on mahdollisuus seurata työpaikkailmoitusmäärien muutoksia viikoittain niin mol:n kuin monsterin järjestelmissä. Pelkkien ilmoitusmäärien lisäksi tilastoista voi seurata yksittäisten ammattitermien esiintymistä, sekä tietyn ammat- tialan ilmoitusten määriä.
Resumo:
O objetivo deste trabalho foi analisar o comportamento espaçotemporal da precipitação pluvial no Estado do Rio Grande do Sul, entre os decênios de 1987-1996 e 1997-2006, por meio de técnicas de mineração de dados. As séries históricas foram adquiridas no sistema de informações hidrológicas Hidroweb. A metodologia utilizada teve como base o modelo CRISP-DM (Cross Industry Standard Process for Data Mining). Foram definidas áreas pluviometricamente homogêneas para os decênios de 1987-1996 e 1997-2006. Em seguida, pela sobreposição dos agrupamentos obtidos para os dois períodos, encontraram-se seis zonas comuns aos dois decênios (A a F). As alterações ocorridas foram avaliadas nas seguintes escalas temporais: anual, sazonal e mensalmente. Os resultados indicaram incrementos significativos (20 a 240 mm) na precipitação anual em todas as zonas, exceto na zona A. Na análise sazonal, as variações foram aleatórias, sendo que, na primavera, todas as zonas apresentaram incremento significativo (44 a 142 mm). Na análise mensal, destaca-se a redução ocorrida no mês de janeiro em todas as zonas, exceto na E. Nos demais meses, as variações foram aleatórias. Os resultados mostram que, entre os decênios, houve uma alteração no volume da precipitação pluvial em todas as escalas temporais analisadas.
Resumo:
Presentation at the Nordic Perspectives on Open Access and Open Science seminar, Helsinki, October 15, 2013
Resumo:
Yritysten syvällinen ymmärrys työntekijöistä vaatii yrityksiltä monipuolista panostusta tiedonhallintaan. Tämän yhdistäminen ennakoivaan analytiikkaan ja tiedonlouhintaan mahdollistaa yrityksille uudenlaisen ulottuvuuden kehittää henkilöstöhallinnon toimintoja niin työntekijöiden kuin yrityksen etujen mukaisesti. Tutkielman tavoitteena oli selvittää tiedonlouhinnan hyödyntämistä henkilöstöhallinnossa. Tutkielma toteutettiin konstruktiivistä menetelmää hyödyntäen. Teoreettinen viitekehys keskittyi ennakoivan analytiikan ja tiedonlouhinnan konseptin ymmärtämiseen. Tutkielman empiriaosuus rakentui kvalitatiiviseen ja kvantitatiiviseen osiin. Kvalitatiivinen osa koostui tutkielman esitutkimuksesta, jossa käsiteltiin ennakoivan analytiikan ja tiedonlouhinnan hyödyntämistä. Kvantitatiivinen osa rakentui tiedonlouhintaprojektiin, joka toteutettiin henkilöstöhallintoon tutkien henkilöstövaihtuvuutta. Esitutkimuksen tuloksena tiedonlouhinnan hyödyntämisen haasteiksi ilmeni muun muassa tiedon omistajuus, osaaminen ja ymmärrys mahdollisuuksista. Tiedonlouhintaprojektin tuloksena voidaan todeta, että tutkimuksessa sovelletuista korrelaatioiden tutkimisista ja logistisesta regressioanalyysistä oli havaittavissa tilastollisia riippuvuuksia vapaaehtoisesti poistuvien työntekijöiden osalta.
Resumo:
Liiketoiminta-analytiikka on yksi yritysten suorituskyvyn johtamisen osa-alue, joka on viime aikoina noussut vahvasti esille yritysten kilpailuedun mahdollistavana avaintekijänä. Tämän tutkimuksen tavoitteena oli kartoittaa yritysten liiketoiminta-analytiikan nykytila ja tarpeet Suomessa. Tutkimus on luonteeltaan kvalitatiivinen vertaileva tutkimus. Tutkimuksen empiirinen aineisto kerättiin kahden menetelmän yhdistelmänä. Liiketoiminta-analytiikan hyödyntämisessä edistyneempien yrityksien asiantuntijoille toteutettiin haastattelut. Lisäksi toteutettiin sähköpostitse lomakemuotoinen kyselytutkimus, jotta saavutettaisiin kattavampi näkemys analytiikan markkinoista. Tutkimuksessa on kartoitettu, miten Suomessa ymmärretään liiketoiminta- analytiikan käsite eri yrityksien analytiikan asiantuntijoiden toimesta, sekä minkälaisissa päätöksentekotilanteissa liiketoiminta-analytiikkaa hyödynnetään ja minkälaisilla tavoilla. Lisäksi on selvitetty, miten liiketoiminta-analytiikan kehittämistä ja analytiikan kyvykkyyksiä hallitaan yrityksissä. Liiketoiminta-analytiikka on Suomessa tietyillä toimialoilla erittäin kehittynyttä, mutta yleisesti ollaan jäljessä alan edelläkävijöitä ja esimerkiksi Ruotsia. Liiketoiminta-analytiikan hyödyntäminen ja tarpeet ovat pitkälti kohdistuneet päätöksentekotilanteisiin, joissa yritys kohtaa asiakkaansa. Suurin yksittäinen este liiketoiminta-analytiikan hyödyntämiselle on resurssi- ja osaamisvaje.
Resumo:
In recent decades, business intelligence (BI) has gained momentum in real-world practice. At the same time, business intelligence has evolved as an important research subject of Information Systems (IS) within the decision support domain. Today’s growing competitive pressure in business has led to increased needs for real-time analytics, i.e., so called real-time BI or operational BI. This is especially true with respect to the electricity production, transmission, distribution, and retail business since the law of physics determines that electricity as a commodity is nearly impossible to be stored economically, and therefore demand-supply needs to be constantly in balance. The current power sector is subject to complex changes, innovation opportunities, and technical and regulatory constraints. These range from low carbon transition, renewable energy sources (RES) development, market design to new technologies (e.g., smart metering, smart grids, electric vehicles, etc.), and new independent power producers (e.g., commercial buildings or households with rooftop solar panel installments, a.k.a. Distributed Generation). Among them, the ongoing deployment of Advanced Metering Infrastructure (AMI) has profound impacts on the electricity retail market. From the view point of BI research, the AMI is enabling real-time or near real-time analytics in the electricity retail business. Following Design Science Research (DSR) paradigm in the IS field, this research presents four aspects of BI for efficient pricing in a competitive electricity retail market: (i) visual data-mining based descriptive analytics, namely electricity consumption profiling, for pricing decision-making support; (ii) real-time BI enterprise architecture for enhancing management’s capacity on real-time decision-making; (iii) prescriptive analytics through agent-based modeling for price-responsive demand simulation; (iv) visual data-mining application for electricity distribution benchmarking. Even though this study is from the perspective of the European electricity industry, particularly focused on Finland and Estonia, the BI approaches investigated can: (i) provide managerial implications to support the utility’s pricing decision-making; (ii) add empirical knowledge to the landscape of BI research; (iii) be transferred to a wide body of practice in the power sector and BI research community.
Resumo:
Companies require information in order to gain an improved understanding of their customers. Data concerning customers, their interests and behavior are collected through different loyalty programs. The amount of data stored in company data bases has increased exponentially over the years and become difficult to handle. This research area is the subject of much current interest, not only in academia but also in practice, as is shown by several magazines and blogs that are covering topics on how to get to know your customers, Big Data, information visualization, and data warehousing. In this Ph.D. thesis, the Self-Organizing Map and two extensions of it – the Weighted Self-Organizing Map (WSOM) and the Self-Organizing Time Map (SOTM) – are used as data mining methods for extracting information from large amounts of customer data. The thesis focuses on how data mining methods can be used to model and analyze customer data in order to gain an overview of the customer base, as well as, for analyzing niche-markets. The thesis uses real world customer data to create models for customer profiling. Evaluation of the built models is performed by CRM experts from the retailing industry. The experts considered the information gained with help of the models to be valuable and useful for decision making and for making strategic planning for the future.
Resumo:
Presentation of Kristiina Hormia-Poutanen at the 25th Anniversary Conference of The National Repository Library of Finland, Kuopio 22th of May 2015.