973 resultados para oral contraceptive agent
Resumo:
Fourier-transform (FT)-Raman and -infrared (IR) spectroscopy were employed to investigate the function of the aqueous 2-hydroxyethylmethacrylate/glutaraldehyde solution (Gluma) as a desensitizer. 2-Hydroxyethylmethacrylate (HEMA), glutaraldehyde (GA), and the mixture of HEMA/GA (i.e. Gluma) were used to interact with dentin, collagen, hydroxyapatite (HAP), and bovine serum albumin (BSA) individually. All the interactions were monitored by an FT-Raman spectrometer. FT-IR spectroscopy was also used in this study. The results show that HEMA could be absorbed by dentin and collagen; GA could cross-link collagen and BSA; and when BSA was added to Gluma, polymerization of HEMA occurred. The results suggest that Gluma acts as a desensitizer whereby, first, GA reacts with part of the serum albumin in dentinal fluid, which induces a precipitation of serum albumin, then, second, a reaction of GA with serum albumin induces polymerization of HEMA. The function of Gluma as a desensitizer to block dentinal tubules occurs via these two reactions.
Resumo:
The selective separation of Y from yttrium solution containing small heavy rare earth (HRE) impurities (Ho, Er, Tm, Yb, Lu) by liquid-liquid extraction using CA-100 in the presence of a water-soluble complexing agent of ethylenediaminetetraacetic acid (EDTA) was experimentally studied at 298K. Experiments were carried Out in two feeds, Feed-I: [RE](f) = 4.94 x 10(-3) M, Y = 98.5%, HRE (Ho, Er, Tm, Yb, Lu) = 1.5%; Feed-II: [RE](f) = 4.94 x 10(-3) M, Y = 99.9%, HRE (Ho, Er, Tm, Yb, Lu) = 0.1%, as a function of equilibrium pH (pH(eq)), the concentration ratio of [EDTA]:[HRE impurities]. It was shown that the extraction of HRE in the presence of EDTA was suppressed when compared to that of Y because of the masking effect, while the selective extraction of Y was enhanced and the separation factors increased to maximum at appropriate condition for Feed-I: Y/Ho = 1.53, Y/Er = 3.09, Y/Tm = 5.61, Y/Yb = 12.04, Y/Lu = 27.51 at pH 4.37 and [EDTA]:[HRE impurities] = 4: 1, for Feed-II: Y/Ho = 1.32, Y/Er = 1.91, Y/Tm = 2.00, Y/Yb = 3.05, Y/Lu = 3.33 at pH 4.42 and [EDTA]: [HRE impurities] = 8:1. The separation and purification of Y by this method was discussed.
Resumo:
In this paper, we found that boron deposited on the surface of support when sodium borohydride used as reducing agent during the preparation of Pt/C catalyst. The deposition of boron markedly reduces particle size of Pt, raises electrochemical active surface (EAS) area of catalyst and electrochemical activity for hydrogen evolution or oxygen reduction reaction (ORR) compared with which prepared using other reducing agents (hydrogen and formaldehyde).
Resumo:
In this article, we employed triphenylmethanethiol (TPMT) as a novel rigid agent for capping gold nanoparticles and the TPMT monolayer-protected gold nanoparticles were characterized by various analytical techniques. High-resolution transmission electron microscopy showed a narrow dispersed gold core with an average core diameter of ca. 3.6 nm. The UV/vis spectrum revealed the surface plasmon absorbance at 528 nm. The p-pi conjugated structure of the TPMT ligand was confirmed by nuclear magnetic resonance. Differential scanning calorimetry and Fourier transform infrared spectroscopy revealed the rigid nature of the TPMT chains.
Resumo:
Macromolecular conjugates of two kinds of natural polysaccharides, that from Panax quinquefolium linn (PQPS) and Ganoderma applanatum pat (GAPS), with gadolinium-diethylenetriaminepenta-acetic acid (Gd-DTPA) have been synthesized and characterized by means of FTIR, elementary analysis and ICP-AES. Their stability was investigated by competition study with Ca2+, EDTA (ethylenediaminetetraacetic acid) and DTPA. Polysaccharide-bound complexes exhibit T-1 relaxivities of 1.5-1.7 times that of Gd-DTPA in D2O at 25degreesC and 9.4T. MR imaging of Sprague-Dawley (SD) rats showed remarkable enhancement in rat liver and kidney after i.v. injection of these two complexes: liver parenchyma 60.9+/-5.6%, 57.8+/-7.4% at 65-85 min; kidney 144.9+/-14.5%, 199.9+/-25.4% at 10-30 min for PQPS-GdDTPA, GAPS-Gd-DTPA at gadolinium dose of 0.083 and 0.082 mmol/kg, respectively. Our preliminary in vivo and in vitro study indicates that the two kinds of polysaccharide-bound complexes are potential tissue-specific contrast agents for MRI.
Resumo:
Arabinogalactan-Gd-DTPA was synthesized by the reaction of diethylenetriaminepenta-acetic acid (DTPA) bisanhydride with polysaccharide in dry DMSO and characterized by FTIR, elemental analysis and ICP-AES. Its stability was investigated by competition with Ca2+, EDTA, DTPA. The t(1)-relaxivity is 8.06 mmol(-1) . L . s(-1) in D2O, 8.48 mmol(-1) . L . s(-1) in 0.725 mmol . L-1 BSA, respectively. t(1)-weighted MR imaging of rat kidney and liver showed a remarkable enhancement post injection of Arabinogalactan-Gd-DTPA. The results indicate that the arabinogalactan-Gd-DTPA is a potential contrast agent for MRI.
Resumo:
Two gadolinium polyoxometalates, K9GdW10O36 and K-11 [Gd(PW11O39)(2)], have been evaluated both in vivo and in vitro as candidates for tissue-specific MRI contrast agents. T-1-relaxivities of 6.89 mM(-1) . s(-1) for K9GdW10O36 and 5.27 mM(-1) . s(-1) for K-11[Gd(PW11O39)(2)] are slightly higher than that of the commercial MRI contrast agent (Gd-DTPA). Both compounds bind with bovine serum albumin and human serum transferrin and favorable liver-specific contrast enhancement in in vivo MRI with Sprague-Dawley rats after i.v. administration has been demonstrated. Imaging studies demonstrate that the two agents have a long residence time, showing MR signal enhancement in the liver for more than 40 min, longer than commercially available contrast agents. In vivo and in vitro assays showed that GdW10 and Gd(PW11)(2) are promising liver-specific MRI contrast agents and GdW10 may be used in the diagnosis of the pathological state. However, with the higher acute toxicity, the two gadolinium polyoxometalates need to be modified and studied further before clinical use.
Resumo:
Racemic cis-BCH-189 can be resolved to (-)-enantiomer (lamivudine) and (+)-enantiomer by esterification of cis-2-hydroxymethyl-5-(N-4(')-acetylcytosine-1'-yl)-1,3-oxathiolane and (+)-menthyl chloroformate in CH3CN with pyridine as base. The two diastereomers of ester were seperated by recrystallization in methanol at 0degreesC. Lamivudine was obtained by deprotection of (-)-diastereomer with high yield.
Resumo:
The influences of nucleating agent EDBS on crystallization behavior and properties of polypropylene UP) and its copolymer with a small amount (4. 48 %, molar fraction) of ethylene (CPP) were studied. DSC results indicated that the crystallization temperature of iPP and CPP samples with 0.5 % (mass fraction) EDBS obviously increased and the degree of crystallinity of these samples became higher. In addition, adding small amount of EDBS enhanced the crystallization of the low isotacticity and low molecular weight segments of the CPP. PLM results showed that their spherulite size decreased markedly, and as a result, the transmittance and haze of the films were all improved.
Resumo:
A functionalized high-density polyethylene (HDPE) with maleic anhydride (MAH) was prepared using a reactive extruding method. This copolymer was used as a compatibilizer of blends of polyamide 6 (PA6) and ultrahigh molecular weight polyethylene (UHMWPE). Morphologies were examined by a scanning electron microscope. It was found that the dimension of UHMWPE and HDPE domains in the PA6 matrix decreased dramatically, compared with that of the uncompatibilized blending system. The size of the UHMWPE domains was reduced from 35 mu m (PA6/UHMWPE, 80/20) to less than 4 mu m (PA6/UHMWPE/HDPE-g-MAH, 80/20/20). The tensile strength and Izod impact strength of PA6/UHMWPE/HDPE-g-MAH (80/20/20) were 1.5 and 1.6 times as high as those of PA6/UHMWPE: (80/20), respectively. This behavior could be attributed to chemical reactions between the anhydride groups of HDPE-g-MAH and the terminal amino groups of PA6 in PA6/UHMWPE/HDPE-g-MAH blends. Thermal analysis was performed to confirm that the above chemical reactions took place during the blending process. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The crystallization behavior of PHBV, poly(beta -hydroxybutyrate-co-beta -hydrxyvalerate), with nucleating agents under isothermal conditions was investigated. A differential scanning calorimeter was used to monitor the crystallization process from the melt. During isothermal crystallization, the dependence of relative degree of crystallinity on time was described by the Avrami equation. It has been shown that the addition of BN and Tale causes a considerable increase in the overall crystallization rate of PHBV but does not influence the Avrami exponent n, mechanism of nucleation and spherulite growth mode of PHBV. A little of nucleating agent will increase the crystallization rate and decrease the fold surface free energy sigma (e), remarkably. The effect of BN is more significant than that of Talc.
Resumo:
Conductive polyaniline was found to have special marine antifouling property. The coating from conducting polyaniline and epoxy resin(or polyurethane) can last 6-9 months in Southern China sea, i.e., less than 10% of the coating surface was fouled during this period. The conducting polyaniline has special synergetic antifouling effect on other antifouling agents like cuprous oxide or 4, 4'-dichlorodiphenyltrichloroethane. The conductivity of the polyaniline was found to be extremely important for its antifouling effect. Moreover, employing aliphatic polyamine as solvent of emeraldine base and curing agent of epoxy resin, a new technique to process corrosion prevention coating containing emeraldine base was developed, therefrom the emeraldine base and epoxy resin was in molecular level blending. This technique was solvent free and extremely effective, i.e., only 1wt% of emeraldine base in the coating can have good corrosion prevention property.
Resumo:
Blends of a liquid crystalline thermotropic copolyester (LCP70) and an amorphous phenolphthalein based poly(ether-ketone)(PEK-C) with two viscosities were prepared by melt blending. The blends' morphology, rheological and mechanical properties were investigated by DSC, SEM, mechanical and rheological tests. It was observed that the optimum composition of the PEK-C/LCP70 blend was 10 wt% LCP for both mechanical and rheological properties. When the LCP content was less than 10%, the LCP phase existed as finely dispersed fibrous domains with a diameter of about 1 mu m in the matrix, and both tensile and flexural properties were improved. In contrast, when the LCP content reached 20% or more, the LCP domains coalesced to ellipsoidal particles with a diameter of about 5 mu m, and the mechanical properties decreased as a result. It is demonstrated that pure PEK-C with a high viscosity which was difficult to process by melt extrusion, could be extruded conveniently when 10% LCP70 was incorporated. It is emphasized that LCP not only can be used as a reinforcing phase but also an effective processing agent for engineering thermoplastics, especially for those with high viscosity and narrow processing window. (C) 1997 Elsevier Science Ltd.