937 resultados para optimal power flow successive linear programming
Resumo:
In this article we propose a 0-1 optimization model to determine a crop rotation schedule for each plot in a cropping area. The rotations have the same duration in all the plots and the crops are selected to maximize plot occupation. The crops may have different production times and planting dates. The problem includes planting constraints for adjacent plots and also for sequences of crops in the rotations. Moreover, cultivating crops for green manuring and fallow periods are scheduled into each plot. As the model has, in general, a great number of constraints and variables, we propose a heuristics based on column generation. To evaluate the performance of the model and the method, computational experiments using real-world data were performed. The solutions obtained indicate that the method generates good results.
Resumo:
We consider an agricultural production problem, in which one must meet a known demand of crops while respecting ecologically-based production constraints. The problem is twofold: in order to meet the demand, one must determine the division of the available heterogeneous arable areas in plots and, for each plot, obtain an appropriate crop rotation schedule. Rotation plans must respect ecologically-based constraints such as the interdiction of certain crop successions, and the regular insertion of fallows and green manures. We propose a linear formulation for this problem, in which each variable is associated with a crop rotation schedule. The model may include a large number of variables and it is, therefore, solved by means of a column-generation approach. We also discuss some extensions to the model, in order to incorporate additional characteristics found in field conditions. A set of computational tests using instances based on real-world data confirms the efficacy of the proposed methodology. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of task scheduling is to minimize the makespan of applications, exploiting the best possible way to use shared resources. Applications have requirements which call for customized environments for their execution. One way to provide such environments is to use virtualization on demand. This paper presents two schedulers based on integer linear programming which schedule virtual machines (VMs) in grid resources and tasks on these VMs. The schedulers differ from previous work by the joint scheduling of tasks and VMs and by considering the impact of the available bandwidth on the quality of the schedule. Experiments show the efficacy of the schedulers in scenarios with different network configurations.
Resumo:
The focus of study in this paper is the class of packing problems. More specifically, it deals with the placement of a set of N circular items of unitary radius inside an object with the aim of minimizing its dimensions. Differently shaped containers are considered, namely circles, squares, rectangles, strips and triangles. By means of the resolution of non-linear equations systems through the Newton-Raphson method, the herein presented algorithm succeeds in improving the accuracy of previous results attained by continuous optimization approaches up to numerical machine precision. The computer implementation and the data sets are available at http://www.ime.usp.br/similar to egbirgin/packing/. (C) 2009 Elsevier Ltd, All rights reserved.
Resumo:
Given a fixed set of identical or different-sized circular items, the problem we deal with consists on finding the smallest object within which the items can be packed. Circular, triangular, squared, rectangular and also strip objects are considered. Moreover, 2D and 3D problems are treated. Twice-differentiable models for all these problems are presented. A strategy to reduce the complexity of evaluating the models is employed and, as a consequence, instances with a large number of items can be considered. Numerical experiments show the flexibility and reliability of the new unified approach. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The subgradient optimization method is a simple and flexible linear programming iterative algorithm. It is much simpler than Newton's method and can be applied to a wider variety of problems. It also converges when the objective function is non-differentiable. Since an efficient algorithm will not only produce a good solution but also take less computing time, we always prefer a simpler algorithm with high quality. In this study a series of step size parameters in the subgradient equation is studied. The performance is compared for a general piecewise function and a specific p-median problem. We examine how the quality of solution changes by setting five forms of step size parameter.
Algoritmo genético para seleção de contingências na análise estática de segurança em redes elétricas
Resumo:
This work presents a scalable and efficient parallel implementation of the Standard Simplex algorithm in the multicore architecture to solve large scale linear programming problems. We present a general scheme explaining how each step of the standard Simplex algorithm was parallelized, indicating some important points of the parallel implementation. Performance analysis were conducted by comparing the sequential time using the Simplex tableau and the Simplex of the CPLEXR IBM. The experiments were executed on a shared memory machine with 24 cores. The scalability analysis was performed with problems of different dimensions, finding evidence that our parallel standard Simplex algorithm has a better parallel efficiency for problems with more variables than constraints. In comparison with CPLEXR , the proposed parallel algorithm achieved a efficiency of up to 16 times better
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Artificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements. Systems based on artificial neural networks have high computational rates due to the use of a massive number of these computational elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving problems related to operations research. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.
Resumo:
In this paper, a multi-objective approach for observing the performance of distribution systems with embedded generators in the steady state, based on heuristic and power system analysis, is proposed. The proposed hybrid performance index describes the quality of the operating state in each considered distribution network configuration. In order to represent the system state, the loss allocation in the distribution systems, based on the Z-bus loss allocation method and compensation-based power flow algorithm, is determined. Also, an investigation of the impact of the integration of embedded generators on the overall performance of the distribution systems in the steady state, is performed. Results obtained from several case studies are presented and discussed. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O método de fluxo de carga convencional é considerado inadequado para se obter o ponto de máximo carregamento (PMC) de sistemas de potência, devido à singularidade da matriz Jacobiana neste ponto. Os métodos da continuação são ferramentas eficientes para a solução deste tipo de problema, visto que técnicas de parametrização podem ser utilizadas para evitar a singularidade da matriz Jacobiana. Neste trabalho, novas opções para a etapa de parametrização do método da continuação são apresentadas. Mostra-se que variáveis com claro significado físico podem ser utilizadas na etapa de parametrização. As seguintes variáveis foram testadas: perda total de potência ativa e reativa, potência ativa e reativa na barra de referência, potência reativa das barras de geração, e as perdas de potência ativa e reativa nas linhas de transmissão (LT). Além de facilitar a implementação computacional do método de continuação, as técnicas de parametrização apresentadas simplificam a definição matemática e o entendimento do método por parte de engenheiros de potência, visto que os métodos de continuação existentes na literatura sempre utilizam técnicas de parametrização complexas, e de interpretação puramente geométrica. Resultados obtidos com a nova metodologia para os sistemas testes do IEEE (14, 30, 57 e 118 barras) mostram que as características de convergência do método de fluxo de carga convencional são melhoradas na região do PMC. Além disso, durante o traçado das curvas PV, as diversas técnicas de parametrização podem ser comutadas entre si possibilitando o cálculo de todos os pontos da curva com um número reduzido de iterações. Diversos testes são realizados para proporcionar a comparação do desempenho dos esquemas de parametrização propostos.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)