690 resultados para omega 3 fatty acid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolic bioactivation, glutathione depletion, and covalent binding are the early hallmark events after acetaminophen (APAP) overdose. However, the subsequent metabolic consequences contributing to APAP-induced hepatic necrosis and apoptosis have not been fully elucidated. In this study, serum metabolomes of control and APAP-treated wild-type and Cyp2e1-null mice were examined by liquid chromatography-mass spectrometry (LC-MS) and multivariate data analysis. A dose-response study showed that the accumulation of long-chain acylcarnitines in serum contributes to the separation of wild-type mice undergoing APAP-induced hepatotoxicity from other mouse groups in a multivariate model. This observation, in conjunction with the increase of triglycerides and free fatty acids in the serum of APAP-treated wild-type mice, suggested that APAP treatment can disrupt fatty acid beta-oxidation. A time-course study further indicated that both wild-type and Cyp2e1-null mice had their serum acylcarnitine levels markedly elevated within the early hours of APAP treatment. While remaining high in wild-type mice, serum acylcarnitine levels gradually returned to normal in Cyp2e1-null mice at the end of the 24 h treatment. Distinct from serum aminotransferase activity and hepatic glutathione levels, the pattern of serum acylcarnitine accumulation suggested that acylcarnitines can function as complementary biomarkers for monitoring the APAP-induced hepatotoxicity. An essential role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the regulation of serum acylcarnitine levels was established by comparing the metabolomic responses of wild-type and Ppara-null mice to a fasting challenge. The upregulation of PPARalpha activity following APAP treatment was transient in wild-type mice but was much more prolonged in Cyp2e1-null mice. Overall, serum metabolomics of APAP-induced hepatotoxicity revealed that the CYP2E1-mediated metabolic activation and oxidative stress following APAP treatment can cause irreversible inhibition of fatty acid oxidation, potentially through suppression of PPARalpha-regulated pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic inflammation is a fundamental aspect of metabolic disorders such as obesity, diabetes and cardiovascular disease. Cholesterol crystals are metabolic signals that trigger sterile inflammation in atherosclerosis, presumably by activating inflammasomes for IL-1β production. We found here that atherogenesis was mediated by IL-1α and we identified fatty acids as potent inducers of IL-1α-driven vascular inflammation. Fatty acids selectively stimulated the release of IL-1α but not of IL-1β by uncoupling mitochondrial respiration. Fatty acid-induced mitochondrial uncoupling abrogated IL-1β secretion, which deviated the cholesterol crystal-elicited response toward selective production of IL-1α. Our findings delineate a previously unknown pathway for vascular immunopathology that links the cellular response to metabolic stress with innate inflammation, and suggest that IL-1α, not IL-1β, should be targeted in patients with cardiovascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity and diabetes are associated with increased fatty acid availability in excess of muscle fatty acid oxidation capacity. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in the development of skeletal-muscle insulin resistance. We tested the hypothesis that 'Western' and high fat diets differentially cause maladaptation of cardiac- and skeletal-muscle fatty acid oxidation, resulting in cardiac contractile dysfunction. Wistar rats were fed on low fat, 'Western' or high fat (10, 45 or 60% calories from fat respectively) diet for acute (1 day to 1 week), short (4-8 weeks), intermediate (16-24 weeks) or long (32-48 weeks) term. Oleate oxidation in heart muscle ex vivo increased with high fat diet at all time points investigated. In contrast, cardiac oleate oxidation increased with Western diet in the acute, short and intermediate term, but not in the long term. Consistent with fatty acid oxidation maladaptation, cardiac power decreased with long-term Western diet only. In contrast, soleus muscle oleate oxidation (ex vivo) increased only in the acute and short term with either Western or high fat feeding. Fatty acid-responsive genes, including PDHK4 (pyruvate dehydrogenase kinase 4) and CTE1 (cytosolic thioesterase 1), increased in heart and soleus muscle to a greater extent with feeding a high fat diet compared with a Western diet. In conclusion, we implicate inadequate induction of a cassette of fatty acid-responsive genes, and impaired activation of fatty acid oxidation, in the development of cardiac dysfunction with Western diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The forensic utility of fatty acid ethyl esters (FAEEs) in dried blood spots (DBS) as short-term confirmatory markers for ethanol intake was examined. An LC-MS/MS method for the determination of FAEEs in DBS was developed and validated to investigate FAEE formation and elimination in a drinking study, whereby eight subjects ingested 0.66-0.84 g/kg alcohol to reach blood alcohol concentrations (BAC) of 0.8 g/kg. Blood was taken every 1.5-2 h, BAC was determined, and dried blood spots were prepared, with 50 μL of blood, for the determination of FAEEs. Lower limits of quantitation (LLOQ) were between 15 and 37 ng/mL for the four major FAEEs. Validation data are presented in detail. In the drinking study, ethyl palmitate and ethyl oleate proved to be the two most suitable markers for FAEE determination. Maximum FAEE concentrations were reached in samples taken 2 or 4 h after the start of drinking. The following mean peak concentrations (c̅ max) were reached: ethyl myristate 14 ± 4 ng/mL, ethyl palmitate 144 ± 35 ng/mL, ethyl oleate 125 ± 55 ng/mL, ethyl stearate 71 ± 21 ng/mL, total FAEEs 344 ± 91 ng/mL. Detectability of FAEEs was found to be on the same time scale as BAC. In liquid blood samples containing ethanol, FAEE concentrations increase post-sampling. This study shows that the use of DBS fixation prevents additional FAEE formation in blood samples containing ethanol. Positive FAEE results obtained by DBS analysis can be used as evidence for the presence of ethanol in the original blood sample. Graphical Abstract Time courses for fatty acid ethyl ester (FAEE) concentrations in DBS and ethanol concentrations for subject 1 over a period of 7 h. Ethanol ingestion occured during the first hour of the time course.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fatty acid synthesis type II pathway has received considerable interest as a candidate therapeutic target in Plasmodium falciparum asexual blood-stage infections. This apicoplast-resident pathway, distinct from the mammalian type I process, includes FabI. Here, we report synthetic chemistry and transfection studies concluding that Plasmodium FabI is not the target of the antimalarial activity of triclosan, an inhibitor of bacterial FabI. Disruption of fabI in P. falciparum or the rodent parasite P. berghei does not impede blood-stage growth. In contrast, mosquito-derived, FabI-deficient P. berghei sporozoites are markedly less infective for mice and typically fail to complete liver-stage development in vitro. This defect is characterized by an inability to form intrahepatic merosomes that normally initiate blood-stage infections. These data illuminate key differences between liver- and blood-stage parasites in their requirements for host versus de novo synthesized fatty acids, and create new prospects for stage-specific antimalarial interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acylamidohydrolases from higher plants have not been characterized or cloned so far. AtAMI1 is the first member of this enzyme family from a higher plant and was identified in the genome of Arabidopsis thaliana based on sequence homology with the catalytic-domain sequence of bacterial acylamidohydrolases, particularly those that exhibit indole-3-acetamide amidohydrolase activity. AtAMI1 polypeptide and mRNA are present in leaf tissues, as shown by immunoblotting and RT-PCR, respectively. AtAMI1 was expressed from its cDNA in enzymatically active form and exhibits substrate specificity for indole-3-acetamide, but also some activity against l-asparagine. The recombinant enzyme was characterized further. The results show that higher plants have acylamidohydrolases with properties similar to the enzymes of certain plant-associated bacteria such as Agrobacterium-, Pseudomonas- and Rhodococcus-species, in which these enzymes serve to synthesize the plant growth hormone, indole-3-acetic acid, utilized by the bacteria to colonize their host plants. As indole-3-acetamide is a native metabolite in Arabidopsis thaliana, it can no longer be ruled out that one pathway for the biosynthesis of indole-3-acetic acid involves indole-3-acetamide-hydrolysis by AtAMI1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine the contribution of polar auxin transport (PAT) to auxin accumulation and to adventitious root (AR) formation in the stem base of Petunia hybrida shoot tip cuttings, the level of indole-3-acetic acid (IAA) was monitored in non-treated cuttings and cuttings treated with the auxin transport blocker naphthylphthalamic acid (NPA) and was complemented with precise anatomical studies. The temporal course of carbohydrates, amino acids and activities of controlling enzymes was also investigated. Analysis of initial spatial IAA distribution in the cuttings revealed that approximately 40 and 10% of the total IAA pool was present in the leaves and the stem base as rooting zone, respectively. A negative correlation existed between leaf size and IAA concentration. After excision of cuttings, IAA showed an early increase in the stem base with two peaks at 2 and 24h post excision and, thereafter, a decline to low levels. This was mirrored by the expression pattern of the auxin-responsive GH3 gene. NPA treatment completely suppressed the 24-h peak of IAA and severely inhibited root formation. It also reduced activities of cell wall and vacuolar invertases in the early phase of AR formation and inhibited the rise of activities of glucose-6-phosphate dehydrogenase and phosphofructokinase during later stages. We propose a model in which spontaneous AR formation in Petunia cuttings is dependent on PAT and on the resulting 24-h peak of IAA in the rooting zone, where it induces early cellular events and also stimulates sink establishment. Subsequent root development stimulates glycolysis and the pentosephosphate pathway

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El interés creciente en encontrar alimentos precocinados congelados que se asemejen a productos naturales, capaces de superar un procesado con el menor daño, ha generado un aumento en el estudio de nuevos productos en este campo de la investigación. Las características de cada matriz alimentaria, la composición y estructura de los ingredientes, así como el efecto de las interacciones entre ellos, modifica la textura, estructura y las propiedades físicas y sensoriales del alimento, así como su aceptación por el consumidor. En este contexto, la investigación realizada en esta tesis doctoral se ha llevado a cabo en puré de patata considerado como una matriz alimentaria semisólida y se ha centrado en analizar los efectos de la concentración y modificación de la composición en las propiedades reológicas y de textura, en las propiedades físico-químicas y estructurales, así como en los atributos sensoriales de los purés de patata cuando a estos se le añaden diferentes ingredientes funcionales como fibra de guisante, inulina, aceite de oliva, aislado de proteína de soja, ácidos grasos omega 3 y/o sus mezclas. Para ello, se han realizado cuatro estudios donde se determinan las propiedades reológicas mediante ensayos dinámicos oscilatorios y en estado estacionario, los parámetros instrumentales de textura mediante ensayos de extrusión inversa y de penetración cónica, además de los cambios estructurales a través de cromatografía iónica con detector de pulsos amperométrico, cromatografía de gases con detector de ionización de llama y microscopía electrónica de barrido. Conjuntamente, se han evaluado los atributos sensoriales de los diferentes purés generando los descriptores que mejor definen la calidad sensorial del producto, utilizando un panel de jueces entrenados y valorándose la aceptación global de los nuevos productos mediante un panel de consumidores. En un primer estudio, el puré de patata natural congelado elaborado con crioprotectores se enriqueció con fibra dietética insoluble (fibra de guisante), fibra dietética soluble (inulina) y sus mezclas. La fibra de guisante influyó significativa y negativamente en la textura del puré de patata, percibiéndose en el producto un incremento de la dureza y de la arenosidad, mientras que la inulina produjo un ablandamiento del sistema. En un segundo estudio, el puré de patata natural fresco y congelado/descongelado elaborado con y sin crioprotectores, se enriqueció con fibra dietética soluble (inulina), aceite de oliva virgen extra y sus mezclas. La adición de estos dos ingredientes generó un ablandamiento de la matriz del sistema, produciéndose, sin embargo, un efecto sinérgico entre ambos ingredientes funcionales. La inulina tuvo un efecto más significativo en la viscosidad aparente del producto, mientras que el aceite de oliva virgen extra afectó más significativamente a la pseudoplasticidad, al índice de consistencia y a la viscosidad plástica del mismo. El proceso de congelación y descongelación utilizado favoreció la reducción del tamaño de las partículas de inulina haciéndolas imperceptibles al paladar, obteniéndose productos más cremosos y con mayor aceptabilidad global que sus homólogos frescos. En un tercer estudio, el puré de patata natural fresco y congelado/descongelado elaborado con crioprotectores se enriqueció con mezclas de fibra dietética soluble (inulina) y aislado de proteína de soja. Los resultados demostraron que el ciclo de congelación y descongelación realizado no afecta el grado de polimerización de la inulina. La estructura química de la inulina tampoco se vio afectada por la incorporación de la soja. El proceso de congelación/descongelación, así como la adición de concentraciones altas de inulina y bajas de aislado de proteína de soja, favorecen la disminución de la contribución de la componente viscosa en las propiedades viscoelásticas del puré de patata. La cremosidad fue el único atributo sensorial que presentó una correlación lineal significativa entre las puntuaciones otorgadas por panelistas entrenados y no entrenados. Por último, se elaboró un puré de patata natural fresco y congelado/descongelado optimizado con crioprotectores y enriquecido con la suma de ácido docosahexaenoico (DHA, C22:6 n-3) y ácido eicosapentaenoico (EPA, C20:5 n-3) y con ácido α-linolénico (ALA, C18:3 n-3) microencapsulados. El ciclo de congelación y descongelación no afectó al perfil de ácidos grasos del puré de patata. La adición de omega 3 procedente de aceites de lino y pescado microencapsulados mejora los indicadores nutricionales que definen la calidad de la grasa, obteniéndose un producto más saludable. ABSTRACT The growing interest in finding frozen precooked products that are like a natural product and capable of withstanding initial processing with minimum damage and remaining stable during preservation and reheating prior to consumption has generated an increase in studies of new products in this field of research. The characteristics of each food matrix, the composition and structure of the ingredients and the effect of interactions between them alter the texture, structure and physical and sensory properties of the food product and its acceptance by the consumer. In this context, the research conducted in this doctoral thesis was carried out on mashed potato, considered as a semi-solid food matrix, and focused on analysing the effects of concentration and modification of the composition of the mashed potato matrix on the rheological and textural properties, physicochemical and structural properties and sensory attributes of mashed potato when various functional ingredients are added to it, such as pea fibre, inulin, olive oil, soy protein isolate, omega 3 fatty acids and/or mixtures of these ingredients. Four studies were conducted for this purpose. Rheological properties were determined by oscillatory dynamic tests and stationary state tests, and instrumental texture parameters by backward extrusion and cone penetration tests. Structural changes were studied by ion chromatography with pulsed amperometric detector, gas chromatography with flame ionisation detector and scanning electron microscopy. The sensory attributes of the various mashed potato mixtures were evaluated by generating the descriptors that best defined the sensory quality of the products and using a panel of trained judges, and overall acceptance of the new products was evaluated by a panel of consumers. In the first study, frozen natural mashed potato incorporating cryoprotectants was enriched with insoluble dietary fibre (pea fibre), soluble dietary fibre (inulin) and mixtures of the two. Pea fibre had a significant negative influence on the texture of the mashed potato, producing an increase in hardness and granularity, whereas inulin produced a softening of the system. In the second study, fresh and frozen/thawed natural mashed potato prepared with and without cryoprotectants was enriched with soluble dietary fibre (inulin), extra virgin olive oil and mixtures of the two. The addition of these two ingredients generated softening of the matrix of the system, but a synergic effect between the two functional ingredients was produced. Inulin had a more significant effect on the apparent viscosity of the product, whereas extra virgin olive oil had a more significant effect on its pseudoplasticity, consistency index and plastic viscosity. The freezing and thawing process that was used contributed to a reduction in the size of the inulin particles, making them imperceptible to the palate and producing creamier products with greater overall acceptability than their fresh equivalents. In the third study, the fresh and frozen/thawed natural mashed potato incorporating cryoprotectants was enriched with mixtures of soluble dietary fibre (inulin) and soy protein isolate. The results showed that the freezing and thawing process that was performed did not affect the degree of polymerisation of the inulin. The chemical structure of the inulin was also not affected by the incorporation of soy. The freezing and thawing process and the addition of high concentrations of inulin and low concentrations of soy protein isolate favoured a decrease in the contribution of the viscous component to the viscoelastic properties of the mashed potato. Creaminess was the only sensory attribute that presented a significant linear correlation between the scores given by trained and untrained panellists. Lastly, fresh and frozen/thawed natural mashed potato optimised with cryoprotectants was prepared and enriched with the sum of docosahexaenoic acid (DHA, C22:6 n-3) and eicosapentaenoic acid (EPA, C20:5 n-3) and with α-linolenic acid (ALA, C18:3 n-3), microencapsulated. The freezing and thawing process did not affect the fatty acid profile of the mashed potato. The addition of omega 3 obtained from microencapsulated linseed and fish oils improved the nutritional indicators that define the quality of the fat, producing a healthier product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatty acid binding proteins (FABPs) exhibit a β-barrel topology, comprising 10 antiparallel β-sheets capped by two short α-helical segments. Previous studies suggested that fatty acid transfer from several FABPs occurs during interaction between the protein and the acceptor membrane, and that the helical domain of the FABPs plays an important role in this process. In this study, we employed a helix-less variant of intestinal FABP (IFABP-HL) and examined the rate and mechanism of transfer of fluorescent anthroyloxy fatty acids (AOFA) from this protein to model membranes in comparison to the wild type (wIFABP). In marked contrast to wIFABP, IFABP-HL does not show significant modification of the AOFA transfer rate as a function of either the concentration or the composition of the acceptor membranes. These results suggest that the transfer of fatty acids from IFABP-HL occurs by an aqueous diffusion-mediated process, i.e., in the absence of the helical domain, effective collisional transfer of fatty acids to membranes does not occur. Binding of wIFABP and IFABP-HL to membranes was directly analyzed by using a cytochrome c competition assay, and it was shown that IFABP-HL was 80% less efficient in preventing cytochrome c from binding to membranes than the native IFABP. Collectively, these results indicate that the α-helical region of IFABP is involved in membrane interactions and thus plays a critical role in the collisional mechanism of fatty acid transfer from IFABP to phospholipid membranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the regulation of the human fatty acid synthase gene by the thyroid hormone triiodothyronine, various constructs of the human fatty acid synthase promoter and the luciferase reporter gene were transfected in combination with plasmids expressing the thyroid hormone and the retinoid X receptors in HepG2 cells. The reporter gene was activated 25-fold by the thyroid hormone in the presence of the thyroid hormone receptor. When both the thyroid hormone and the retinoid X receptors were expressed in HepG2 cells, there was about a 100-fold increase in reporter gene expression. 5′-Deletion analysis disclosed two thyroid hormone response elements, TRE1 (nucleotides −870 to −650) and TRE2 (nucleotides −272 to −40), in the human fatty acid synthase promoter. The presence of thyroid hormone response elements in these two regions of the promoter was confirmed by cloning various fragments of these two regions in the minimal thymidine kinase promoter−luciferase reporter gene plasmid construct and determining reporter gene expression. The results of this cloning procedure and those of electrophoretic mobility shift assays indicated that the sequence GGGTTAcgtcCGGTCA (nucleotides −716 to −731) represents TRE1 and that the sequence GGGTCC (nucleotides −117 to −112) represents TRE2. The sequence of TRE1 is very similar to the consensus sequence of the thyroid hormone response element, whereas the sequence of TRE2 contains only a half-site of the thyroid hormone response element consensus motif because it lacks the direct repeat. The sequences on either side of TRE2 seem to influence its response to the thyroid hormone and retinoid X receptors.