780 resultados para multi-objective decision making


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agro-areas of Arroyos Menores (La Colacha) west and south of Rand south of R?o Cuarto (Prov. of Cordoba, Argentina) basins are very fertile but have high soil loses. Extreme rain events, inundations and other severe erosions forming gullies demand urgently actions in this area to avoid soil degradation and erosion supporting good levels of agro production. The authors first improved hydrologic data on La Colacha, evaluated the systems of soil uses and actions that could be recommended considering the relevant aspects of the study area and applied decision support systems (DSS) with mathematic tools for planning of defences and uses of soils in these areas. These were conducted here using multi-criteria models, in multi-criteria decision making (MCDM); first of discrete MCDM to chose among global types of use of soils, and then of continuous MCDM to evaluate and optimize combined actions, including repartition of soil use and the necessary levels of works for soil conservation and for hydraulic management to conserve against erosion these basins. Relatively global solutions for La Colacha area have been defined and were optimised by Linear Programming in Goal Programming forms that are presented as Weighted or Lexicographic Goal Programming and as Compromise Programming. The decision methods used are described, indicating algorithms used, and examples for some representative scenarios on La Colacha area are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the question of maximizing classifier accuracy for classifying task-related mental activity from Magnetoencelophalography (MEG) data. We propose the use of different sources of information and introduce an automatic channel selection procedure. To determine an informative set of channels, our approach combines a variety of machine learning algorithms: feature subset selection methods, classifiers based on regularized logistic regression, information fusion, and multiobjective optimization based on probabilistic modeling of the search space. The experimental results show that our proposal is able to improve classification accuracy compared to approaches whose classifiers use only one type of MEG information or for which the set of channels is fixed a priori.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Probabilistic modeling is the de�ning characteristic of estimation of distribution algorithms (EDAs) which determines their behavior and performance in optimization. Regularization is a well-known statistical technique used for obtaining an improved model by reducing the generalization error of estimation, especially in high-dimensional problems. `1-regularization is a type of this technique with the appealing variable selection property which results in sparse model estimations. In this thesis, we study the use of regularization techniques for model learning in EDAs. Several methods for regularized model estimation in continuous domains based on a Gaussian distribution assumption are presented, and analyzed from di�erent aspects when used for optimization in a high-dimensional setting, where the population size of EDA has a logarithmic scale with respect to the number of variables. The optimization results obtained for a number of continuous problems with an increasing number of variables show that the proposed EDA based on regularized model estimation performs a more robust optimization, and is able to achieve signi�cantly better results for larger dimensions than other Gaussian-based EDAs. We also propose a method for learning a marginally factorized Gaussian Markov random �eld model using regularization techniques and a clustering algorithm. The experimental results show notable optimization performance on continuous additively decomposable problems when using this model estimation method. Our study also covers multi-objective optimization and we propose joint probabilistic modeling of variables and objectives in EDAs based on Bayesian networks, speci�cally models inspired from multi-dimensional Bayesian network classi�ers. It is shown that with this approach to modeling, two new types of relationships are encoded in the estimated models in addition to the variable relationships captured in other EDAs: objectivevariable and objective-objective relationships. An extensive experimental study shows the e�ectiveness of this approach for multi- and many-objective optimization. With the proposed joint variable-objective modeling, in addition to the Pareto set approximation, the algorithm is also able to obtain an estimation of the multi-objective problem structure. Finally, the study of multi-objective optimization based on joint probabilistic modeling is extended to noisy domains, where the noise in objective values is represented by intervals. A new version of the Pareto dominance relation for ordering the solutions in these problems, namely �-degree Pareto dominance, is introduced and its properties are analyzed. We show that the ranking methods based on this dominance relation can result in competitive performance of EDAs with respect to the quality of the approximated Pareto sets. This dominance relation is then used together with a method for joint probabilistic modeling based on `1-regularization for multi-objective feature subset selection in classi�cation, where six di�erent measures of accuracy are considered as objectives with interval values. The individual assessment of the proposed joint probabilistic modeling and solution ranking methods on datasets with small-medium dimensionality, when using two di�erent Bayesian classi�ers, shows that comparable or better Pareto sets of feature subsets are approximated in comparison to standard methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to examine the effect of positioning on the correctness of decision making of top-class referees and assistant referees during international games. Match analyses were carried out during the Fe´de´ration Internationale de Football Association (FIFA) Confederations Cup 2009 and 380 foul play incidents and 165 offside situations were examined. The error percentage for the referees when indicating the incidents averaged 14%. The lowest error percentage occurred in the central area of the field, where the collaboration of the assistant referee is limited, and was achieved when indicating the incidents from a distance of 11–15 m, whereas this percentage peaked (23%) in the last 15-min match period. The error rate for the assistant referees was 13%. Distance of the assistant referee to the offside line did not have an impact on the quality of the offside decision. The risk of making incorrect decisions was reduced when the assistant referees viewed the offside situations from an angle between 46 and 608. Incorrect offside decisions occurred twice as often in the second as in the first half of the games. Perceptual-cognitive training sessions specific to the requirements of the game should be implemented in the weekly schedule of football officials to reduce the overall error rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present, in the University curricula in most countries, the decision theory and the mathematical models to aid decision making is not included, as in the graduate program like in Doctored and Master´s programs. In the Technical School of High Level Agronomic Engineers of the Technical University of Madrid (ETSIA-UPM), the need to offer to the future engineers training in a subject that could help them to take decisions in their profession was felt. Along the life, they will have to take a lot of decisions. Ones, will be important and others no. In the personal level, they will have to take several very important decisions, like the election of a career, professional work, or a couple, but in the professional field, the decision making is the main role of the Managers, Politicians and Leaders. They should be decision makers and will be paid for it. Therefore, nobody can understand that such a professional that is called to practice management responsibilities in the companies, does not take training in such an important matter. For it, in the year 2000, it was requested to the University Board to introduce in the curricula an optional qualified subject of the second cycle with 4,5 credits titled " Mathematical Methods for Making Decisions ". A program was elaborated, the didactic material prepared and programs as Maple, Lingo, Math Cad, etc. installed in several IT classrooms, where the course will be taught. In the course 2000-2001 this subject was offered with a great acceptance that exceeded the forecasts of capacity and had to be prepared more classrooms. This course in graduate program took place in the Department of Applied Mathematics to the Agronomic Engineering, as an extension of the credits dedicated to Mathematics in the career of Engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods for predicting the shear capacity of FRP shear strengthened RC beams assume the traditional approach of superimposing the contribution of the FRP reinforcing to the contributions from the reinforcing steel and the concrete. These methods become the basis for most guides for the design of externally bonded FRP systems for strengthening concrete structures. The variations among them come from the way they account for the effect of basic shear design parameters on shear capacity. This paper presents a simple method for defining improved equations to calculate the shear capacity of reinforced concrete beams externally shear strengthened with FRP. For the first time, the equations are obtained in a multiobjective optimization framework solved by using genetic algorithms, resulting from considering simultaneously the experimental results of beams with and without FRP external reinforcement. The performance of the new proposed equations is compared to the predictions with some of the current shear design guidelines for strengthening concrete structures using FRPs. The proposed procedure is also reformulated as a constrained optimization problem to provide more conservative shear predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A participatory modelling process has been conducted in two areas of the Guadiana river (the upper and the middle sub-basins), in Spain, with the aim of providing support for decision making in the water management field. The area has a semi-arid climate where irrigated agriculture plays a key role in the economic development of the region and accounts for around 90% of water use. Following the guidelines of the European Water Framework Directive, we promote stakeholder involvement in water management with the aim to achieve an improved understanding of the water system and to encourage the exchange of knowledge and views between stakeholders in order to help building a shared vision of the system. At the same time, the resulting models, which integrate the different sectors and views, provide some insight of the impacts that different management options and possible future scenarios could have. The methodology is based on a Bayesian network combined with an economic model and, in the middle Guadiana sub-basin, with a crop model. The resulting integrated modelling framework is used to simulate possible water policy, market and climate scenarios to find out the impacts of those scenarios on farm income and on the environment. At the end of the modelling process, an evaluation questionnaire was filled by participants in both sub-basins. Results show that this type of processes are found very helpful by stakeholders to improve the system understanding, to understand each others views and to reduce conflict when it exists. In addition, they found the model an extremely useful tool to support management. The graphical interface, the quantitative output and the explicit representation of uncertainty helped stakeholders to better understand the implications of the scenario tested. Finally, the combination of different types of models was also found very useful, as it allowed exploring in detail specific aspects of the water management problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An EMI filter design procedure for power converters is proposed. Based on a given noise spectrum, information about the converter noise source impedance and design constraints, the design space of the input filter is defined. The design is based on component databases and detailed models of the filter components, including high frequency parasitics, losses, weight, volume, etc.. The design space is mapped onto a performance space in which different filter implementations are evaluated and compared. A multi-objective optimization approach is used to obtain optimal designs w.r.t. a given performance function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the major challenges in evolutionary robotics is constituted by the need of the robot being able to make decisions on its own, in accordance with the multiple tasks programmed, optimizing its timings and power. In this paper, we present a new automatic decision making mechanism for a robot guide that allows the robot to make the best choice in order to reach its aims, performing its tasks in an optimal way. The election of which is the best alternative is based on a series of criteria and restrictions of the tasks to perform. The software developed in the project has been verified on the tour-guide robot Urbano. The most important aspect of this proposal is that the design uses learning as the means to optimize the quality in the decision making. The modeling of the quality index of the best choice to perform is made using fuzzy logic and it represents the beliefs of the robot, which continue to evolve in order to match the "external reality”. This fuzzy system is used to select the most appropriate set of tasks to perform during the day. With this tool, the tour guide-robot prepares its agenda daily, which satisfies the objectives and restrictions, and it identifies the best task to perform at each moment. This work is part of the ARABOT project of the Intelligent Control Research Group at the Universidad Politécnica de Madrid to create "awareness" in a robot guide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A genetic algorithm (GA) is employed for the multi-objective shape optimization of the nose of a high-speed train. Aerodynamic problems observed at high speeds become still more relevant when traveling along a tunnel. The objective is to minimize both the aerodynamic drag and the amplitude of the pressure gradient of the compression wave when a train enters a tunnel. The main drawback of GA is the large number of evaluations need in the optimization process. Metamodels-based optimization is considered to overcome such problem. As a result, an explicit relationship between pressure gradient and geometrical parameters is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complexity of planning a wireless sensor network is dependent on the aspects of optimization and on the application requirements. Even though Murphy's Law is applied everywhere in reality, a good planning algorithm will assist the designers to be aware of the short plates of their design and to improve them before the problems being exposed at the real deployment. A 3D multi-objective planning algorithm is proposed in this paper to provide solutions on the locations of nodes and their properties. It employs a developed ray-tracing scheme for sensing signal and radio propagation modelling. Therefore it is sensitive to the obstacles and makes the models of sensing coverage and link quality more practical compared with other heuristics that use ideal unit-disk models. The proposed algorithm aims at reaching an overall optimization on hardware cost, coverage, link quality and lifetime. Thus each of those metrics are modelled and normalized to compose a desirability function. Evolutionary algorithm is designed to efficiently tackle this NP-hard multi-objective optimization problem. The proposed algorithm is applicable for both indoor and outdoor 3D scenarios. Different parameters that affect the performance are analyzed through extensive experiments; two state-of-the-art algorithms are rebuilt and tested with the same configuration as that of the proposed algorithm. The results indicate that the proposed algorithm converges efficiently within 600 iterations and performs better than the compared heuristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Shopping centre is a long term investment in which Greenfield development decisions are often taken based on risks analysis regarding construction costs, location, competition, market and an expected DCF. Furthermore, integration between the building design, project planning, operational costs and investment analysis is not entirely considered by the investor at the decision making stage. The absence of such information tends to produce certain negative impacts on the future running costs and annual maintenance of the building, especially on energy demand and other occupancy expenses paid by the tenants to the landlord. From the investor´s point of view, this blind spot in strategy development will possibly decrease their profit margin as changes in the occupancy expenses[ ] have a direct outcome on the profit margin. In order to try to reduce some higher operating cost components such as energy use and other utility savings as well as their CO2 emissions, quite a few income properties worldwide have some type of environmental label such as BREEAM and LEED. The drawback identified in this labelling is that usually the investments required to get an ecolabel are high and the investor finds no direct evidence that it increases market value. However there is research on certified commercial properties (especially offices) that shows better performance in terms of occupancy rate and rental cost (Warren-Myers, 2012). Additionally, Sayce (2013) says that the certification only provides a quick reference point i.e. the lack of a certificate does not indicate that a building is not sustainable or efficient. Based on the issues described above, this research compares important components of the development stages such as investments costs, concept/ strategy development as well as the current investor income and property value. The subjects for this analysis are a shopping centre designed with passive cooling/bioclimatic strategies evaluated at the decision making stage, a certified regional shopping centre and a non-certified standard regional shopping centre. Moreover, the proposal intends to provide decision makers with some tools for linking green design features to the investment analysis in order to optimize the decision making process when looking into cost savings and design quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fiber reinforced polymer composites (FRP) have found widespread usage in the repair and strengthening of concrete structures. FRP composites exhibit high strength-to-weight ratio, corrosion resistance, and are convenient to use in repair applications. Externally bonded FRP flexural strengthening of concrete beams is the most extended application of this technique. A common cause of failure in such members is associated with intermediate crack-induced debonding (IC debonding) of the FRP substrate from the concrete in an abrupt manner. Continuous monitoring of the concrete?FRP interface is essential to pre- vent IC debonding. Objective condition assessment and performance evaluation are challenging activities since they require some type of monitoring to track the response over a period of time. In this paper, a multi-objective model updating method integrated in the context of structural health monitoring is demonstrated as promising technology for the safety and reliability of this kind of strengthening technique. The proposed method, solved by a multi-objective extension of the particle swarm optimization method, is based on strain measurements under controlled loading. The use of permanently installed fiber Bragg grating (FBG) sensors embedded into the FRP-concrete interface or bonded onto the FRP strip together with the proposed methodology results in an automated method able to operate in an unsupervised mode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolutionary algorithms are suitable to solve damage identification problems in a multi-objective context. However, the performance of these methods can deteriorate quickly with increasing noise intensities originating numerous uncertainties. In this paper, a statistic structural damage detection method formulated in a multi-objective context is proposed. The statistic analysis is implemented to take into account the uncertainties existing in the structural model and measured structural modal parameters. The presented method is verified by a number of simulated damage scenarios. The effects of noise and damage levels on damage detection are investigated.