830 resultados para multi-disciplinary design teams
Resumo:
Network Jamming systems provide real-time collaborative performance experiences for novice or inexperienced users. In this paper we will outline the interaction design considerations that have emerged during through evolutionary development cycles of the jam2jam Network Jamming software that employs generative techniques that require particular attention to the human computer relationship. In particular we describe the co-evolution of features and uses, explore the role of agile development methods in supporting this evolution, and show how the provision of a clear core capability can be matched with options for enhanced features support multi-levelled user experience and skill develop.
Resumo:
This research reports on a project concerned with the relationship between the person and the environment in the context of achieving a contemplative or existential state – a state which can be experienced either consciously or subconsciously. The need for such a study originated with the desire to contribute to the design of multicultural spaces which could be used for a range of activities within the public and the personal arena, activities including contemplation, meditation and prayer. The concept of ‘sacred’ is explored in the literature review and in primary interviews with the participants of this study. Given that the word ‘sacred’ is highly value-laden and potentially alienating for some people, it was decided to use the more accessible term ‘contemplative’. The outcomes of the study inform the practice of interior design and architecture which tends currently to neglect the potential for all spaces to be existentially meaningful. Informed by phenomenological methodology, data were collected from a diverse group of people, using photo-elicitation and interviews. The technique of photo-elicitation proved to be highly effective in helping people reveal their everyday lived experience of contemplative spaces. Reflective analysis (Van Manen 2000) was used to explore the data collected. The initial stage of analysis produced three categories of data: varying conceptions of contemplation, aspects of the person involved in the contemplation, and aspects of environment involved in contemplation. From this, it was found that achieving a state of contemplation involves both the person and the environment in a dialectic process of unfolding. The unfolding has various physical, psycho-social, and existential dimensions or qualities which operate sequentially and simultaneously. Two concepts emerged as being central to unfolding: ‘Cleansing’ and ‘Nothingness’. Unfolding is found to comprise the Core; Distinction; Manifestation; Cleansing; Creation; and Sharing. This has a parallel with Mircea Eliade’s (1959) definition of sacred as something that manifests itself as different from the profane. The power of design, re-contextualization through utility and purpose, and the existential engagements between the person and environment are used as a basis for establishing the potential contribution of the study to interior design. In this way, the study makes a contribution to our understanding of how space and its elements inspire, support and sustain person environment interaction – particularly at the existential level – as well as to our understanding of the multi-dimensional and holistic nature of this interaction. In addition, it points to the need for a phenomenological re-conceptualisation of the design/client relationship. In summary, the contributions of this research are: the exploration of contemplative experience as sacred experience; an understanding of the design of space as creating engagement between person and environment; a rationale for the introduction of a phenomenological approach to the relationship between designer and clients; and raising awareness of the spiritual in a holistic approach to design.
Resumo:
Purpose Multi-level diode-clamped inverters have the challenge of capacitor voltage balancing when the number of DC-link capacitors is three or more. On the other hand, asymmetrical DC-link voltage sources have been applied to increase the number of voltage levels without increasing the number of switches. The purpose of this paper is to show that an appropriate multi-output DC-DC converter can resolve the problem of capacitor voltage balancing and utilize the asymmetrical DC-link voltages advantages. Design/methodology/approach A family of multi-output DC-DC converters is presented in this paper. The application of these converters is to convert the output voltage of a photovoltaic (PV) panel to regulate DC-link voltages of an asymmetrical four-level diode-clamped inverter utilized for domestic applications. To verify the versatility of the presented topology, simulations have been directed for different situations and results are presented. Some related experiments have been developed to examine the capabilities of the proposed converters. Findings The three-output voltage-sharing converters presented in this paper have been mathematically analysed and proven to be appropriate to improve the quality of the residential application of PV by means of four-level asymmetrical diode-clamped inverter supplying highly resistive loads. Originality/value This paper shows that an appropriate multi-output DC-DC converter can resolve the problem of capacitor voltage balancing and utilize the asymmetrical DC-link voltages advantages and that there is a possibility of operation at high-modulation index despite reference voltage magnitude and power factor variations.
Resumo:
Is there a role for prototyping (sketching, pattern making and sampling) in addressing real world problems of sustainability (People, Profit, and Planet), in this case social/healthcare issues, through fashion and textiles research? Skin cancer and related illnesses are a major cause of disfigurement and death in New Zealand and Australia where the rates of Melanoma, a serious form of skin cancer, are four times higher than in the Northern Hemisphere regions of USA, UK and Canada (IARC, 1992). In 2007, AUT University (Auckland University of Technology) Fashion Department and the Health Promotion Department of Cancer Society - Auckland Division (CSA) developed a prototype hat aimed at exploring a barrier type solution to prevent facial and neck skin damage. This is a paradigm shift from the usual medical research model. This paper provides an overview of the project and examines how a fashion prototype has been used to communicate emergent social, environmental, personal, physiological and technological concerns to the trans-disciplinary research team. The authors consider how the design of a product can enhance and support sustainable design practice while contributing a potential solution to an ongoing health issue. Analysis of this case study provides an insight into prototyping in fashion and textiles design, user engagement and the importance of requirements analysis in relation to sustainable development. The analysis and a successful outcome of the final prototype have provided a gateway to future collaborative research and product development.
Resumo:
DMAPS (Distributed Multi-Agent Planning System) is a planning system developed for distributed multi-robot teams based on MAPS (Multi-Agent Planning System). MAPS assumes that each agent has the same global view of the environment in order to determine the most suitable actions. This assumption fails when perception is local to the agents: each agent has only a partial and unique view of the environment. DMAPS addresses this problem by creating a probabilistic global view on each agent by fusing the perceptual information from each robot. The experimental results on consuming tasks show that while the probabilistic global view is not identical on each robot, the shared view is still effective in increasing performance of the team.
Resumo:
This paper presents the application of advanced optimization techniques to unmanned aerial system mission path planning system (MPPS) using multi-objective evolutionary algorithms (MOEAs). Two types of multi-objective optimizers are compared; the MOEA nondominated sorting genetic algorithm II and a hybrid-game strategy are implemented to produce a set of optimal collision-free trajectories in a three-dimensional environment. The resulting trajectories on a three-dimensional terrain are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different positions with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of adding a hybrid-game strategy to a MOEA and for a MPPS.
Resumo:
Purpose: The purpose of this paper is to explore the role of cross-functional teams in the alignment between system effectiveness and operational effectiveness after the implementation of enterprise information systems (EIS). In addition, it aims to explore the contribution of cross-functional teams to improvement in operational performance. ---------- Design/methodology/approach: The research uses a combination of qualitative and quantitative methods, in a two-stage methodological approach, to investigate the influence of cross-functional teams on the alignment between system effectiveness and operational effectiveness and the impact of the stated alignment on the improvement in operational performance. ---------- Findings: Initial findings suggest that factors stemming from system effectiveness and the performance objectives stemming from operational effectiveness are important and significantly well correlated factors that promote the alignment between the effectiveness of technological implementation and the effectiveness of operations. In addition, confirmatory factor analysis has been used to find the structural relationships and provide explanations for the stated alignment and the contribution of cross-functional teams to the improvement in operational performance. ---------- Research limitations/implications: The principal limitation of this study is its small sample size. ---------- Practical implications: Cross-functional teams have been used by many organisations as a way of involving expertise from different functional areas in the implementation of innovative technologies. An appropriate use of the dimensions that emerged from this research, in the context of cross-functional teams, will assist organisations to properly utilise cross-functional teams with the aim of improving operational performance. ---------- Originality/value: The paper presents a new approach to measure the effectiveness of EIS implementation by adding new dimensions to measure it.
Resumo:
This thesis reports on the investigations, simulations and analyses of novel power electronics topologies and control strategies. The research is financed by an Australian Research Council (ARC) Linkage (07-09) grant. Therefore, in addition to developing original research and contributing to the available knowledge of power electronics, it also contributes to the design of a DC-DC converter for specific application to the auxiliary power supply in electric trains. Specifically, in this regard, it contributes to the design of a 7.5 kW DC-DC converter for the industrial partner (Schaffler and Associates Ltd) who supported this project. As the thesis is formatted as a ‘thesis by publication’, the contents are organized around published papers. The research has resulted in eleven papers, including seven peer reviewed and published conference papers, one published journal paper, two journal papers accepted for publication and one submitted journal paper (provisionally accepted subject to few changes). In this research, several novel DC-DC converter topologies are introduced, analysed, and tested. The similarity of all of the topologies devised lies in their ‘current circulating’ switching state, which allows them to store some energy in the inductor, as extra inductor current. The stored energy may be applied to enhance the performance of the converter in the occurrence of load current or input voltage disturbances. In addition, when there is an alternating load current, the ability to store energy allows the converter to perform satisfactorily despite frequently and highly varying load current. In this research, the capability of current storage has been utilised to design topologies for specific applications, and the enhancement of the performance of the considered applications has been illustrated. The simplest DC-DC converter topology, which has a ‘current circulating’ switching state, is the Positive Buck-Boost (PBB) converter (also known as the non-inverting Buck-Boost converter). Usually, the topology of the PBB converter is operating as a Buck or a Boost converter in applications with widely varying input voltage or output reference voltage. For example, in electric railways (the application of our industrial partner), the overhead line voltage alternates from 1000VDC to 500VDC and the required regulated voltage is 600VDC. In the course of this research, our industrial partner (Schaffler and Associates Ltd) industrialized a PBB converter–the ‘Mudo converter’–operating at 7.5 kW. Programming the onboard DSP and testing the PBB converter in experimental and nominal power and voltage was part of this research program. In the earlier stages of this research, the advantages and drawbacks of utilization of the ‘current circulating’ switching state in the positive Buck-Boost converter were investigated. In brief, the advantages were found to be robustness against input voltage and current load disturbances, and the drawback was extra conduction and switching loss. Although the robustness against disturbances is desirable for many applications, the price of energy loss must be minimized to attract attention to the utilization of the PBB converter. In further stages of this research, two novel control strategies for different applications were devised to minimise the extra energy loss while the advantages of the positive Buck-Boost converter were fully utilized. The first strategy is Smart Load Controller (SLC) for applications with pre-knowledge or predictability of input voltage and/or load current disturbances. A convenient example of these applications is electric/hybrid cars where a master controller commands all changes in loads and voltage sources. Therefore, the master controller has a pre-knowledge of the load and input voltage disturbances so it can apply the SLC strategy to utilize robustness of the PBB converter. Another strategy aiming to minimise energy loss and maximise the robustness in the face of disturbance is developed to cover applications with unexpected disturbances. This strategy is named Dynamic Hysteresis Band (DHB), and is used to manipulate the hysteresis band height after occurrence of disturbance to reduce dynamics of the output voltage. When no disturbance has occurred, the PBB converter works with minimum inductor current and minimum energy loss. New topologies based on the PBB converter have been introduced to address input voltage disturbances for different onboard applications. The research shows that the performance of applications of symmetrical/asymmetrical multi-level diode-clamped inverters, DC-networks, and linear-assisted RF amplifiers may be enhanced by the utilization of topologies based on the PBB converter. Multi-level diode-clamped inverters have the problem of DC-link voltage balancing when the power factor of their load closes to unity. This research has shown that this problem may be solved with a suitable multi-output DC-DC converter supplying DClink capacitors. Furthermore, the multi-level diode-clamped inverters supplied with asymmetrical DC-link voltages may improve the quality of load voltage and reduce the level of Electromagnetic Interference (EMI). Mathematical analyses and experiments on supplying symmetrical and asymmetrical multi-level inverters by specifically designed multi-output DC-DC converters have been reported in two journal papers. Another application in which the system performance can be improved by utilization of the ‘current circulating’ switching state is linear-assisted RF amplifiers in communicational receivers. The concept of ‘linear-assisted’ is to divide the signal into two frequency domains: low frequency, which should be amplified by a switching circuit; and the high frequency domain, which should be amplified by a linear amplifier. The objective is to minimize the overall power loss. This research suggests using the current storage capacity of a PBB based converter to increase its bandwidth, and to increase the domain of the switching converter. The PBB converter addresses the industrial demand for a DC-DC converter for the application of auxiliary power supply of a typical electric train. However, after testing the industrial prototype of the PBB converter, there were some voltage and current spikes because of switching. To attenuate this problem without significantly increasing the switching loss, the idea of Active Gate Signalling (AGS) is presented. AGS suggests a smart gate driver that selectively controls the switching process to reduce voltage/current spikes, without unacceptable reduction in the efficiency of switching.
Resumo:
Multi-purpose Community Entertainment and Recreation Venue, catering for the Mount Isa Rodeo; including campdraft, equine sports, shows, exhibition, trade events, concerts and other community activities. The design involved redevelopment of a portion of the Buchanan Park Race Course located in Mount Isa. The project included community infrastructure planning, major landscaping and the construction of built facilities.
Resumo:
This paper presents the application of advanced optimization techniques to unmanned aerial system mission path planning system (MPPS) using multi-objective evolutionary algorithms (MOEAs). Two types of multi-objective optimizers are compared; the MOEA nondominated sorting genetic algorithm II and a hybrid-game strategy are implemented to produce a set of optimal collision-free trajectories in a three-dimensional environment. The resulting trajectories on a three-dimensional terrain are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different positions with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of adding a hybrid-game strategy to a MOEA and for a MPPS.
Resumo:
Interactive documents for use with the World Wide Web have been developed for viewing multi-dimensional radiographic and visual images of human anatomy, derived from the Visible Human Project. Emphasis has been placed on user-controlled features and selections. The purpose was to develop an interface which was independent of host operating system and browser software which would allow viewing of information by multiple users. The interfaces were implemented using HyperText Markup Language (HTML) forms, C programming language and Perl scripting language. Images were pre-processed using ANALYZE and stored on a Web server in CompuServe GIF format. Viewing options were included in the document design, such as interactive thresholding and two-dimensional slice direction. The interface is an example of what may be achieved using the World Wide Web. Key applications envisaged for such software include education, research and accessing of information through internal databases and simultaneous sharing of images by remote computers by health personnel for diagnostic purposes.
Resumo:
Multi-level concrete buildings requrre substantial temporary formwork structures to support the slabs during construction. The primary function of this formwork is to safely disperse the applied loads so that the slab being constructed, or the portion of the permanent structure already constructed, is not overloaded. Multi-level formwork is a procedure in which a limited number of formwork and shoring sets are cycled up the building as construction progresses. In this process, each new slab is supported by a number of lower level slabs. The new slab load is, essentially, distributed to these supporting slabs in direct proportion to their relative stiffness. When a slab is post-tensioned using draped tendons, slab lift occurs as a portion of the slab self-weight is balanced. The formwork and shores supporting that slab are unloaded by an amount equivalent to the load balanced by the post-tensioning. This produces a load distribution inherently different from that of a conventionally reinforced slab. Through , theoretical modelling and extensive on-site shore load measurement, this research examines the effects of post-tensioning on multilevel formwork load distribution. The research demonstrates that the load distribution process for post-tensioned slabs allows for improvements to current construction practice. These enhancements include a shortening of the construction period; an improvement in the safety of multi-level form work operations; and a reduction in the quantity of form work materials required for a project. These enhancements are achieved through the general improvement in safety offered by post-tensioning during the various formwork operations. The research demonstrates that there is generally a significant improvement in the factors of safety over those for conventionally reinforced slabs. This improvement in the factor of safety occurs at all stages of the multi-level formwork operation. The general improvement in the factors of safety with post-tensioned slabs allows for a shortening of the slab construction cycle time. Further, the low level of load redistribution that occurs during the stripping operations makes post-tensioned slabs ideally suited to reshoring procedures. Provided the overall number of interconnected levels remains unaltered, it is possible to increase the number of reshored levels while reducing the number of undisturbed shoring levels without altering the factors of safety, thereby, reducing the overall quantity of formwork and shoring materials.
Resumo:
Shell structures find use in many fields of engineering, notably structural, mechanical, aerospace and nuclear-reactor disciplines. Axisymmetric shell structures are used as dome type of roofs, hyperbolic cooling towers, silos for storage of grain, oil and industrial chemicals and water tanks. Despite their thin walls, strength is derived due to the curvature. The generally high strength-to-weight ratio of the shell form, combined with its inherent stiffness, has formed the basis of this vast application. With the advent in computation technology, the finite element method and optimisation techniques, structural engineers have extremely versatile tools for the optimum design of such structures. Optimisation of shell structures can result not only in improved designs, but also in a large saving of material. The finite element method being a general numerical procedure that could be used to treat any shell problem to any desired degree of accuracy, requires several runs in order to obtain a complete picture of the effect of one parameter on the shell structure. This redesign I re-analysis cycle has been achieved via structural optimisation in the present research, and MSC/NASTRAN (a commercially available finite element code) has been used in this context for volume optimisation of axisymmetric shell structures under axisymmetric and non-axisymmetric loading conditions. The parametric study of different axisymmetric shell structures has revealed that the hyperbolic shape is the most economical solution of shells of revolution. To establish this, axisymmetric loading; self-weight and hydrostatic pressure, and non-axisymmetric loading; wind pressure and earthquake dynamic forces have been modelled on graphical pre and post processor (PATRAN) and analysis has been performed on two finite element codes (ABAQUS and NASTRAN), numerical model verification studies are performed, and optimum material volume required in the walls of cylindrical, conical, parabolic and hyperbolic forms of axisymmetric shell structures are evaluated and reviewed. Free vibration and transient earthquake analysis of hyperbolic shells have been performed once it was established that hyperbolic shape is the most economical under all possible loading conditions. Effect of important parameters of hyperbolic shell structures; shell wall thickness, height and curvature, have been evaluated and empirical relationships have been developed to estimate an approximate value of the lowest (first) natural frequency of vibration. The outcome of this thesis has been the generation of new research information on performance characteristics of axisymmetric shell structures that will facilitate improved designs of shells with better choice of shapes and enhanced levels of economy and performance. Key words; Axisymmetric shell structures, Finite element analysis, Volume Optimisation_ Free vibration_ Transient response.