961 resultados para mollusc inoculation
Resumo:
The objective of this work was to identify sources of resistance to dry root rot induced by Fusarium sp. in cassava accessions. A macroconidial suspension (20 µL) of 11 Fusarium sp. isolates was inoculated in cassava roots, from 353 acessions plus seven commercial varieties. Ten days after inoculation, the total area colonized by the pathogen on the root pulp was evaluated by digital image analysis. Cluster analysis revealed the presence of five groups regarding resistance. The root lesion areas ranged from 18.28 to 1,096.07 mm² for the accessions BGM 1518 and BGM 556, respectively. The genotypes BGM 1042, BGM 1552, BGM 1586, BGM 1598, and BGM 1692 present the best agronomical traits.
Resumo:
The objective of this work was to evaluate the reaction of four sweet orange cultivars expressing the attacin A gene to 'Candidatus Liberibacter asiaticus' (Las) infection, a bacterium associated to huanglongbing (HLB) disease. Transgenic sweet orange plants of Hamlin, Natal, Pêra, and Valência cultivars, as well as nontransgenic controls received inocula by grafting budwood sections of HLB-infected branches. Disease progression was evaluated through observations of leaf symptoms and by polymerase chain reaction (PCR) analysis, eight months after inoculation. A completely randomized design was used, with four experiments (one for each cultivar) performed simultaneously. Bacteria title was estimated by quantitative PCR (qPCR). HLB symptoms and Las titers were present in nontransgenic and transgenic plants expressing the attacin A gene of the four sweet orange cultivars, eight months after bacteria inoculation. Five transgenic lines (transformation events) of 'Pêra' sweet orange expressing the attacin A gene have significantly lower Las titers in comparison with nontransgenic plants of this cultivar.
Resumo:
The objective of this work was to evaluate the contribution of efficient nitrogen-fixing rhizobial strains to grain yield of new cowpea cultivars, indicated for cultivation in the Brazilian Semiarid region, in the sub-medium of the São Francisco River Valley. Two experiments were set up at the irrigated perimeters of Mandacaru (Juazeiro, state of Bahia) and Bebedouro (Petrolina, state of Pernambuco). The treatments consisted of single inoculation of five rhizobial strains - BR 3267, BR 3262, INPA 03-11B, UFLA 03-84 (Bradyrhizobiumsp.), and BR 3299T(Microvirga vignae) -, besides a treatment with nitrogen and a control without inoculation or N application. The following cowpea cultivars were evaluated: BRS Pujante, BRS Tapaihum, BRS Carijó, and BRS Acauã. A randomized complete block design, with four replicates, was used. Inoculated plants showed similar grain yield to the one observed with plants fertilized with 80 kg ha-1 N. The cultivars BRS Tapaihum and BRS Pujante stood out in grain yield and protein contents when inoculated, showing their potential for cultivation in the sub-medium of the São Francisco River Valley.
Resumo:
The objective of this work was to produce a polyclonal antiserum against the coat protein (CP) of Papaya lethal yellowing virus (PLYV) and to determine its specificity and sensibility in the diagnosis of the virus, as well as to evaluate the genetic resistance to PLYV in papaya (Carica papaya) accessions and to investigate the capacity of the two-spotted spider mite Tetranychus urticae to acquire and transmit PLYV to the plants. Sixty-five papaya accessions were evaluated. For each accession, ten plants were mechanically inoculated using PLYV-infected plant extracts, and three plants were mock inoculated with phosphate buffer alone and used as negative controls. Ninety days after inoculation, newly-emerging systemic leaves were collected from the inoculated plants, and viral infection was diagnosed by indirect Elisa, using polyclonal antiserum sensible to the in vitro-expressed PLYV CP. Viral transmission by T. urticae was evaluated in greenhouse. The experiments were repeated twice. Polyclonal antiserum recognized the recombinant PLYV CP specifically and discriminated PLYV infection from infections caused by other plant viruses. Out of the 65 papaya accessions evaluated, 15 were considered resistant, 18 moderately resistant, and 32 susceptible. The two-spotted spider mite T. urticae was capable of acquiring PLYV, but not of transmitting it to papaya.
Resumo:
In addition to its role as a barrier, the cuticle is also a source of signals perceived by invading fungi. Cuticular breakdown products have been shown previously to be potent inducers of cutinase or developmental processes in fungal pathogens. Here the question was addressed as to whether plants themselves can perceive modifications of the cuticle. This was studied using Arabidopsis thaliana plants with altered cuticular structure. The expression of a cell wall-targeted fungal cutinase in A. thaliana was found to provide total immunity to Botrytis cinerea. The response observed in such cutinase-expressing plants is independent of signal transduction pathways involving salicylic acid, ethylene or jasmonic acid. It is accompanied by the release of a fungitoxic activity and increased expression of members of the lipid transfer protein, peroxidase and protein inhibitor gene families that provide resistance when overexpressed in wild-type plants. The same experiments were made in the bodyguard (bdg) mutant of A. thaliana. This mutant exhibits cuticular defects and remained free of symptoms after inoculation with B. cinerea. The expression of resistance was accompanied by the release of a fungitoxic activity and increased expression of the same genes as observed in cutinase-expressing plants. Structural defects of the cuticle can thus be converted into an effective multi-factorial defence, and reveal a hitherto hidden aspect of the innate immune response of plants.
Resumo:
Kahalalide compounds are peptides that are isolated from a Hawaiian herbivorous marine species of mollusc, Elysia rufescens, and its diet, the green alga Bryopsis sp. Kahalalide F and its synthetic analogues are the most promising compounds of the Kahalalide family because they show anti-tumoral activity. Linear solid-phase syntheses of Kahalalide F have been reported. Here we describe several new improved synthetic routes based on convergent approaches with distinct orthogonal protection schemes for the preparation of Kahaladide analogues. These strategies allow a better control and characterization of the intermediates because more reactions are performed in solution. Five derivatives of Kahalalide F were synthesized using several convergent approaches.
Resumo:
This research was undertaken to study the influence of different concentrations of the MT medium, sucrose, vitamins, activated charcoal and gibberellic acid (GA3) on the culture of immature embryos from the crossing between 'Pêra Rio' sweet orange and 'PONCÃ' mandarin. The embryos were excised under aseptic conditions and inoculated in 15 mL of the MT medium according to the following experiments: 1) MT concentrations (0%, 50%, 100%, 150% and 200%) supplemented with 0, 30, 60 and 90 g.L-1 of sucrose; 2) vitamins concentrations of the MT (0%, 50%, 100%, 150% and 200%) supplemented with 0, 30, 60 and 90 g.L-1 of sucrose; 3) activated charcoal concentrations (0, 0.5, 1, 1.5 and 2 g.L-1) supplemented with GA3 (0, 0.01, 0.1; 1 and 10 mg.L-1). After the inoculation, the embryos were kept in a growth room for 90 days at 27 ± 1ºC, in a 16-hour photoperiod with 32 µmol.m-2.s-1 of irradiance. The best development of embryos at the globular stage was achieved using 50% and 100% of the MT medium plus 60 g.L-1 and 90 g.L-1 of sucrose, respectively, supplemented with 0.01 mg.L-1 of GA3. The addition of activated charcoal or vitamins in the MT medium has shown to be unnecessary to the development of globular embryos.
Resumo:
The role of Parachlamydia acanthamoebae as an agent of pneumonia is suggested by sero-epidemiological studies, molecular surveys and by the permissivity of macrophages, lung fibroblasts and pneumocytes to this obligate intracellular bacteria. We thus developed a murine model of pneumonia due to Parachlamydia. Mice were inoculated intratracheally with Parachlamydia acanthamoebae. Pneumonia-associated mortality was of 50% 5 days post-inoculation. Lungs histopathology was characterized by purulent and interstitial pneumonia. The presence of Parachlamydia in the lesions was demonstrated by PCR, immunohistochemistry and electron microscopy. Moreover, living Parachlamydia could be recovered from the lungs of infected mice using amoebal co-culture. All control mice inoculated with heat-inactivated bacteria were free of symptoms and survived. Thus, we demonstrated that Parachlamydia induce a severe pneumonia in mice. This animal model, which confirms the third and fourth Koch postulates, may be suitable to test in vivo efficient therapeutic regimens against Parachlamydia.
Resumo:
BACKGROUND: Neutrophils are the first line of defense against invading pathogens and are rapidly recruited to the sites of Leishmania inoculation. During Leishmania braziliensis infection, depletion of inflammatory cells significantly increases the parasite load whereas co-inoculation of neutrophils plus L. braziliensis had an opposite effect. Moreover, the co-culture of infected macrophages and neutrophils also induced parasite killing leading us to ask how neutrophils alone respond to an L. braziliensis exposure. Herein we focused on understanding the interaction between neutrophils and L. braziliensis, exploring cell activation and apoptotic fate. METHODS AND FINDINGS: Inoculation of serum-opsonized L. braziliensis promastigotes in mice induced neutrophil accumulation in vivo, peaking at 24 h. In vitro, exposure of thyoglycollate-elicited inflammatory or bone marrow neutrophils to L. braziliensis modulated the expression of surface molecules such as CD18 and CD62L, and induced the oxidative burst. Using mCherry-expressing L. braziliensis, we determined that such effects were mainly observed in infected and not in bystander cells. Neutrophil activation following contact with L. braziliensis was also confirmed by the release of TNF-α and neutrophil elastase. Lastly, neutrophils infected with L. braziliensis but not with L. major displayed markers of early apoptosis. CONCLUSIONS: We show that L. braziliensis induces neutrophil recruitment in vivo and that neutrophils exposed to the parasite in vitro respond through activation and release of inflammatory mediators. This outcome may impact on parasite elimination, particularly at the early stages of infection.
Resumo:
The global human population is expected to reach ∼9 billion by 2050. Feeding this many people represents a major challenge requiring global crop yield increases of up to 100%. Microbial symbionts of plants such as arbuscular mycorrhizal fungi (AMF) represent a huge, but unrealized resource for improving yields of globally important crops, especially in the tropics. We argue that the application of AMF in agriculture is too simplistic and ignores basic ecological principals. To achieve this challenge, a community and population ecology approach can contribute greatly. First, ecologists could significantly improve our understanding of the determinants of the survival of introduced AMF, the role of adaptability and intraspecific diversity of AMF and whether inoculation has a direct or indirect effect on plant production. Second, we call for extensive metagenomics as well as population genomics studies that are crucial to assess the environmental impact that introduction of non-local AMF may have on native AMF communities and populations. Finally, we plead for an ecologically sound use of AMF in efforts to increase food security at a global scale in a sustainable manner.
Resumo:
The aim of this study was to evaluate the pathogenicity of Parachlamydia (P.) acanthamoebae as a potential agent of lower respiratory tract disease in a bovine model of induced lung infection. Intrabronchial inoculation with P. acanthamoebae was performed in healthy calves aged 2-3 months using two challenge doses: 10(8) and 10(10) bacteria per animal. Controls received 10(8) heat-inactivated bacteria. Challenge with 10(8) viable Parachlamydia resulted in a mild degree of general indisposition, whereas 10(10) bacteria induced a more severe respiratory illness becoming apparent 1-2 days post inoculation (dpi), affecting 9/9 (100%) animals and lasting for 6 days. The extent of macroscopic pulmonary lesions was as high as 6.6 (6.0)% [median (range)] of lung tissue at 2-4 dpi and correlated with parachlamydial genomic copy numbers detected by PCR, and with bacterial load estimated by immunohistochemistry in lung tissue. Clinical outcome, acute phase reactants, pathological findings and bacterial load exhibited an initial dose-dependent effect on severity. Animals fully recovered from clinical signs of respiratory disease within 5 days. The bovine lung was shown to be moderately susceptible to P. acanthamoebae, exhibiting a transient pneumonic inflammation after intrabronchial challenge. Further studies are warranted to determine the precise pathophysiologic pathways of host-pathogen interaction.
Resumo:
During 2006 to 2009 season symptoms of a canker disease were observed on twigs and branches of young and mature persimmon trees (Diospyros kaki L.) cv. Fuyu in the States of Santa Catarina and Paraná in the Southern Brazil. The cankers result in severe damage and reduced production. Isolations from the margins of these cankers revealed a genus of Pestalotiopsis. Koch's postulates were confirmed using two isolates of the pathogen which was identified as Pestalotiopsis diospyri.
Resumo:
It was evaluated the genetic divergence in peach genotypes for brown rot reaction. It was evaluated 26 and 29 peach genotypes in the 2009/2010 and 2010/2011 production cycle, respectively. The experiment was carried out at the Laboratório de Fitossanidade, da UTFPR - Campus Dois Vizinhos. The experimental design was entirely randomized, considering each peach genotype a treatment, and it was use three replication of nine fruits. The treatment control use three replication of three peach. The fruit epidermis were inoculated individually with 0.15 mL of M. fructicola conidial suspension (1.0 x 10(5) spores mL-1). In the control treatment was sprayed with 0.15 mL of distilled water. The fruits were examined 72 and 120 hours after inoculation, and the incidence and severity disease were evaluated. These results allowed realized study for genetic divergence, used as dissimilarity measure the Generalized Mahalanobis distance. Cluster analysis using Tocher´s optimization method and distances in the plan were applied. There was smallest genetic divergence among peach trees evaluated for brown rot, what can difficult to obtain resistance in the genotypes.
Resumo:
In order to better understand the fate and activity of bacteria introduced into contaminated material for the purpose of enhancing biodegradation rates, we constructed Sphingomonas wittichii RW1 variants with gene reporters interrogating dibenzofuran metabolic activity. Three potential promoters from the dibenzofuran metabolic network were selected and fused to the gene for enhanced green fluorescent protein (EGFP). The stability of the resulting genetic constructions in RW1 was examined, with plasmids based on the broad-host range vector pME6012 being the most reliable. One of the selected promoters, upstream of the gene Swit_4925 for a putative 2-hydroxy-2,4-pentadienoate hydratase, was inducible by growth on dibenzofuran. Sphingomonas wittichii RW1 equipped with the Swit_4925 promoter egfp fusion grew in a variety of non-sterile sandy microcosms contaminated with dibenzofuran and material from a former gasification site. The strain also grew in microcosms without added dibenzofuran but to a very limited extent, and EGFP expression indicated the formation of consistent small subpopulations of cells with an active inferred dibenzofuran metabolic network. Evidence was obtained for competition for dibenzofuran metabolites scavenged by resident bacteria in the gasification site material, which resulted in a more rapid decline of the RW1 population. Our results show the importance of low inoculation densities in order to observe the population development of the introduced bacteria and further illustrate that the limited availability of unique carbon substrate may be the most important factor impinging growth.
Resumo:
BACKGROUND: An important signal transduction pathway in plant defence depends on the accumulation of salicylic acid (SA). SA is produced in chloroplasts and the multidrug and toxin extrusion transporter ENHANCED DISEASE SUSCEPTIBILITY5 (EDS5; At4g39030) is necessary for the accumulation of SA after pathogen and abiotic stress. EDS5 is localized at the chloroplast and functions in transporting SA from the chloroplast to the cytoplasm. EDS5 has a homologue called EDS5H (EDS5 HOMOLOGUE; At2g21340) but its relationship to EDS5 has not been described and its function is not known. RESULTS: EDS5H exhibits about 72% similarity and 59% identity to EDS5. In contrast to EDS5 that is induced after pathogen inoculation, EDS5H was constitutively expressed in all green tissues, independently of pathogen infection. Both transporters are located at the envelope of the chloroplast, the compartment of SA biosynthesis. EDS5H is not involved with the accumulation of SA after inoculation with a pathogen or exposure to UV stress. A phylogenetic analysis supports the hypothesis that EDS5H may be an H(+)/organic acid antiporter like EDS5. CONCLUSIONS: The data based on genetic and molecular studies indicate that EDS5H despite its homology to EDS5 does not contribute to pathogen-induced SA accumulation like EDS5. EDS5H most likely transports related substances such as for example phenolic acids, but unlikely SA.