809 resultados para misure sperimentali localizzazione indoor ranging reti wireless
Resumo:
The efficiency of a Wireless Power Transfer (WPT) system is greatly dependent on both the geometry and operating frequency of the transmitting and receiving structures. By using Coupled Mode Theory (CMT), the figure of merit is calculated for resonantly-coupled loop and dipole systems. An in-depth analysis of the figure of merit is performed with respect to the key geometric parameters of the loops and dipoles, along with the resonant frequency, in order to identify the key relationships leading to high-efficiency WPT. For systems consisting of two identical single-turn loops, it is shown that the choice of both the loop radius and resonant frequency are essential in achieving high-efficiency WPT. For the dipole geometries studied, it is shown that the choice of length is largely irrelevant and that as a result of their capacitive nature, low-MHz frequency dipoles are able to produce significantly higher figures of merit than those of the loops considered. The results of the figure of merit analysis are used to propose and subsequently compare two mid-range loop and dipole WPT systems of equal size and operating frequency, where it is shown that the dipole system is able to achieve higher efficiencies than the loop system of the distance range examined.
Resumo:
Buildings consume a large amount of energy, in both their use and production. Retrofitting aims to achieve a reduction in this energy consumption. However, there are concerns that retrofitting can cause negative impacts on the internal environment including poor thermal comfort and health issues. This research investigates the impact of retrofitting the façade of existing traditional buildings and the resulting impact on the indoor environment and occupant thermal comfort. A Case building located at the University of Reading has been monitored experimentally and modelled using IES software with monitored values as input conditions for the model. The proposed façade related retrofit options have been simulated and provide information on their effect on the indoor environment. The findings show a positive impact on the internal environment. The data shows a 16.2% improvement in thermal comfort after retrofit is simulated. This also achieved a 21.6% reduction in energy consumption from the existing building.
Resumo:
Demand for good indoor air quality is increasing as people recorgnise the risks to their health and productivity from indoor pollutants. There is a tendency to reduce ventilation rates to ensure energy conservation in buildings; in this instance schools. However, evidence reviewed shows that this can be detrimental to health and wellbeing in schools because of the learner density within a small area (1.8 - 2.4m2/person); eventually indicating that carbon dioxide (CO2) levels can rise to very high levels in classroom occupancy periods. A preliminary study to investigate the impact of indoor environmental parameters has been performed in a secondary school classroom in Pretoria, South Africa. Factors monitored include temperature, relative humidity, lighting, air velocities and CO2 concentrations. From the results low air velocities are recorded (i.e. 0.1-0.3m/s) impacting on the retention of CO2 build-up in the classroom. Results presented in this paper are the initial findings of ongoing research.
Resumo:
Wireless Sensor Networks (WSNs) have been an exciting topic in recent years. The services offered by a WSN can be classified into three major categories: monitoring, alerting, and information on demand. WSNs have been used for a variety of applications related to the environment (agriculture, water and forest fire detection), the military, buildings, health (elderly people and home monitoring), disaster relief, and area or industrial monitoring. In most WSNs tasks like processing the sensed data, making decisions and generating emergency messages are carried out by a remote server, hence the need for efficient means of transferring data across the network. Because of the range of applications and types of WSN there is a need for different kinds of MAC and routing protocols in order to guarantee delivery of data from the source nodes to the server (or sink). In order to minimize energy consumption and increase performance in areas such as reliability of data delivery, extensive research has been conducted and documented in the literature on designing energy efficient protocols for each individual layer. The most common way to conserve energy in WSNs involves using the MAC layer to put the transceiver and the processor of the sensor node into a low power, sleep state when they are not being used. Hence the energy wasted due to collisions, overhearing and idle listening is reduced. As a result of this strategy for saving energy, the routing protocols need new solutions that take into account the sleep state of some nodes, and which also enable the lifetime of the entire network to be increased by distributing energy usage between nodes over time. This could mean that a combined MAC and routing protocol could significantly improve WSNs because the interaction between the MAC and network layers lets nodes be active at the same time in order to deal with data transmission. In the research presented in this thesis, a cross-layer protocol based on MAC and routing protocols was designed in order to improve the capability of WSNs for a range of different applications. Simulation results, based on a range of realistic scenarios, show that these new protocols improve WSNs by reducing their energy consumption as well as enabling them to support mobile nodes, where necessary. A number of conference and journal papers have been published to disseminate these results for a range of applications.
Resumo:
Network diagnosis in Wireless Sensor Networks (WSNs) is a difficult task due to their improvisational nature, invisibility of internal running status, and particularly since the network structure can frequently change due to link failure. To solve this problem, we propose a Mobile Sink (MS) based distributed fault diagnosis algorithm for WSNs. An MS, or mobile fault detector is usually a mobile robot or vehicle equipped with a wireless transceiver that performs the task of a mobile base station while also diagnosing the hardware and software status of deployed network sensors. Our MS mobile fault detector moves through the network area polling each static sensor node to diagnose the hardware and software status of nearby sensor nodes using only single hop communication. Therefore, the fault detection accuracy and functionality of the network is significantly increased. In order to maintain an excellent Quality of Service (QoS), we employ an optimal fault diagnosis tour planning algorithm. In addition to saving energy and time, the tour planning algorithm excludes faulty sensor nodes from the next diagnosis tour. We demonstrate the effectiveness of the proposed algorithms through simulation and real life experimental results.
Resumo:
The progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to the base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments.
Resumo:
The aim of this study was to estimate the indoor and outdoor concentrations of fungal spores in the Metropolitan Area of Sao Paulo (MASP), collected at different sites in winter/spring and summer seasons. The techniques adopted included cultivation (samples collected with impactors) and microscopic enumeration (samples collected with impingers). The overall results showed total concentrations of fungal spores as high as 36,000 per cubic meter, with a large proportion of non culturable spores (around 91% of the total). Penicillium sp. and Aspergillus sp. were the dominant species both indoors and outdoors, in all seasons tested, occurring in more than 30% of homes at very high concentrations of culturable airborne fungi [colony forming units(CFU) m(-3)]. There was no significant difference between indoor and outdoor concentrations. The total fungal spore concentration found in winter was 19% higher than that in summer. Heat and humidity were the main factors affecting fungal growth; however, a non-linear response to these factors was found. Thus, temperatures below 16A degrees C and above 25A degrees C caused a reduction in the concentration (CFU m(-3)) of airborne fungi, which fits with MASP climatalogy. The same pattern was observed for humidity, although not as clearly as with temperature given the usual high relative humidity (above 70%) in the study area. These results are relevant for public health interventions that aim to reduce respiratory morbidity among susceptible populations.
Influence of Radiotransmitters on Fecal Glucocorticoid Levels of Free-Ranging Male American Kestrels
Resumo:
Although radiotelemetry is considered a valuable technique for ornithological field studies, several assumptions have been made about the impact that transmitters may have on the estimation of behavioral, ecological, and reproductive parameters. To assess the potential effects of backpack radiotransmitters, we captured and assigned 8 male American kestrels (Falco sparverius) into 2 groups: radiotagged (n = 6) and control individuals (leg-banded, n = 2). Thereafter, we collected feces approximately 2 hours after capture (day -1), and subsequently during days 0 (releasing day), 4, 7, 15, 30, 40, and 55. Prior to fecal analysis, we validated the corticosterone enzyme immunoassay using standard procedures (e. g., parallelism, dose-response curve), and we confirmed physiological significance of fecal glucocorticoid metabolites through adrenocorticotropin challenge, which induced an increase of 4-fold (446.10 +/- 60.73 ng/g) above baseline (114.27 +/- 15.23 ng/g) within 4 hours (P < 0.001). Both groups exhibited a significant increase in fecal glucocorticoids during day 0 (P < 0.001), but concentrations returned to preattachment values within 4 days. Fecal glucocorticoid concentrations did not differ between samples of radiotagged and leg-banded kestrels (P > 0.05). In spite of the small number of monitored subjects, these findings suggested that radiotransmitters did not affect adrenocortical activity in these male American kestrels. (JOURNAL OF WILDLIFE MANAGEMENT 73(5): 772-778; 2009)
Resumo:
Parasites of wild primates are important for conservation biology and human health due to their high potential to infect humans. In the Amazon region, non-human primates are commonly infected by Trypanosoma cruzi and T rangeli, which are also infective to man and several mammals. This is the first survey of trypanosomiasis in a critically endangered species of tamarin, Saguinus bicolor (Callitrichidae), from the Brazilian Amazon Rainforest. Of the 96 free-ranging specimens of S. bicolor examined 45 (46.8%) yielded blood smears positive for trypanosomes. T rangeli was detected in blood smears of 38 monkeys (39.6%) whereas T. cruzi was never detected. Seven animals (7.3%) presented trypanosomes of the subgenus Megatrypanum. Hemocultures detected 84 positive tamarins (87.5%). Seventy-two of 84 (85.7%) were morphologically diagnosed as T rangeli and 3 (3.1%) as T. cruzi. Nine tamarins (9.4%) yielded mixed cultures of these two species, which after successive passages generated six cultures exclusively of T. cruzi and two of T rangeli, with only one culture remaining mixed. Of the 72 cultures positive for T rangeli, 62 remained as established cultures and were genotyped: 8 were assigned to phylogenetic lineage A (12.9%) and 54 to lineage B (87.1%). Ten established cultures of T. cruzi were genotyped as TCI lineage (100%). Transmission of both trypanosome species, their potential risk to this endangered species and the role of wild primates as reservoirs for trypanosomes infective to humans are discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This research was carried out by studying possible renovation of a two-storey detached multifamily building by using passive solar design options in a cold climate in Borlänge, Sweden where the heating Degree Days are 4451 (base 20°C). Borlänge`s housing company, Tunabyggen, plans to renovate the project house located inthe multicultural district, Jakobsgårdarna. The goal of the thesis was to suggest a redesign of the current building, decrease the heating energy use, by applying passive solar design and control strategies, in a most reasonable way. In addition ensure a better thermal comfort for the tenants in the dwellings. Literatures have been studied, from which can be inferred that passive design should be abasic design consideration for all housing constructions, because it has advantages to ensure thermal comfort, and reduce the energy use. In addition further savings can be achieved applying different types of control strategies, from which the house will be more personalized, and better adapted to the user’s needs.The proposed method is based on simulations by using TRNSYS software. First a proper building model was set up, which represents the current state of the project building. Then the thermal insulation and the windows were upgraded, based on today's building regulations. The developments of the passive solar options were accomplished in two steps. First of all the relevant basic passive design elements were considered, then those advantages were compared to the advantages of applying new conventional thermostat, and shading control strategies.The results show that there is significant potential with the different types of passive solar design; their usage depends primarily on the location of the site as well as the orientation of the project building. Applying the control strategies, such as thermostat, and shading control, along the thermal insulation upgrade, may lead to significant energy savings (around 40 %), by comparison to the reference building without any upgrade.
Resumo:
Reindeer herding in Sweden is a form of pastoralism practised by the indigenous Sami population. The economy is mainly based on meat production. Herd size is generally regulated by harvest in order not to overuse grazing ranges and keep a productive herd. Nonetheless, herd growth and room for harvest is currently small in many areas. Negative herd growth and low harvest rate were observed in one of two herds in a reindeer herding community in Central Sweden. The herds (A and B) used the same ranges from April until the autumn gathering in October-December, but were separated on different ranges over winter. Analyses of capture-recapture for 723 adult female reindeer over five years (2007-2012) revealed high annual losses (7.1% and 18.4%, for herd A and B respectively). A continuing decline in the total reindeer number in herd B demonstrated an inability to maintain the herd size in spite of a very small harvest. An estimated breakpoint for when herd size cannot be kept stable confirmed that the observed female mortality rate in herd B represented a state of herd collapse. Lower calving success in herd B compared to A indicated differences in winter foraging conditions. However, we found only minor differences in animal body condition between the herds in autumn. We found no evidence that a lower autumn body mass generally increased the risk for a female of dying from one autumn to the next. We conclude that the prime driver of the on-going collapse of herd B is not high animal density or poor body condition. Accidents or disease seem unlikely as major causes of mortality. Predation, primarily by lynx and wolverine, appears to be the most plausible reason for the high female mortality and state of collapse in the studied reindeer herding community.
Resumo:
Este trabalho apresenta, inicialmente, uma análise comparativa detalhada dos dois padrões, IEEE 802.11a e IEEE802.11b, que foram apresentados recentemente pelo IEEE na área de redes sem fio (wireless). São apresentadas as principais diferenças tecnológicas dos dois padrões, no que se refere, principalmente, à arquitetura, funções de controle, segurança, desempenho e custo de implementação destas duas tecnologias de redes wireless. São avaliados também os aspectos de interoperabilidade, quando estas redes são integradas em redes corporativas fixas, que são baseadas, principalmente, em redes Ethernet, tradicionalmente usadas em redes corporativas. São considerados também, aspectos de custo e flexibilidade de aplicação das duas tecnologias e mostram-se como estas diferenças devem ser levadas em conta em aplicações típicas de um ambiente corporativo. Finalmente, apresenta-se também, como estudo de caso, uma análise focalizada principalmente na integração da tecnologia wireless em aplicações típicas de uma grande empresa local. Consideram-se as vantagens e desvantagens de ambas as tecnologias, como solução para algumas aplicações típicas encontradas nesta empresa, e justifica-se a escolha da solução que foi adotada. Conclui-se com algumas projeções quanto ao futuro da tecnologia wireless no ambiente público e corporativo.
Resumo:
In the last years the number of industrial applications for Augmented Reality (AR) and Virtual Reality (VR) environments has significantly increased. Optical tracking systems are an important component of AR/VR environments. In this work, a low cost optical tracking system with adequate attributes for professional use is proposed. The system works in infrared spectral region to reduce optical noise. A highspeed camera, equipped with daylight blocking filter and infrared flash strobes, transfers uncompressed grayscale images to a regular PC, where image pre-processing software and the PTrack tracking algorithm recognize a set of retro-reflective markers and extract its 3D position and orientation. Included in this work is a comprehensive research on image pre-processing and tracking algorithms. A testbed was built to perform accuracy and precision tests. Results show that the system reaches accuracy and precision levels slightly worse than but still comparable to professional systems. Due to its modularity, the system can be expanded by using several one-camera tracking modules linked by a sensor fusion algorithm, in order to obtain a larger working range. A setup with two modules was built and tested, resulting in performance similar to the stand-alone configuration.