991 resultados para methane hydrate


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last decade pockmarks have proven to be important seabed features that provide information about fluid flow on continental margins. Their formation and dynamics are still poorly constrained due to the lack of proper three dimensional imaging of their internal structure. Numerous fluid escape features provide evidence for an active fluid-flow system on the Norwegian margin, specifically in the Nyegga region. In June-July 2006 a high-resolution seismic experiment using Ocean Bottom Seismometers (OBS) was carried out to investigate the detailed 3D structure of a pockmark named G11 in the region. An array of 14 OBS was deployed across the pockmark with 1 m location accuracy. Shots fired from surface towed mini GI guns were also recorded on a near surface hydrophone streamer. Several reflectors of high amplitude and reverse polarity are observed on the profiles indicating the presence of gas. Gas hydrates were recovered with gravity cores from less than a meter below the seafloor during the cruise. Indications of gas at shallow depths in the hydrate stability field show that methane is able to escape through the water-saturated sediments in the chimney without being entirely converted into gas hydrate. An initial 2D raytraced forward model of some of the P wave data along a line running NE-SW across the G11 pockmark shows, a gradual increase in velocity between the seafloor and a gas charged zone lying at ~300 m depth below the seabed. The traveltime fit is improved if the pockmark is underlain by velocities higher than in the surrounding layer corresponding to a pipe which ascends from the gas zone, to where it terminates in the pockmark as seen in the reflection profiles. This could be due to the presence of hydrates or carbonates within the sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methane surplus relative to the atmospheric equilibrium is a frequently observed feature of ocean surface water. Despite the common fact that biological processes are responsible for its origin, the formation of methane in aerobic surface water is still poorly understood. We report on methane production in the central Arctic Ocean, which was exclusively detected in Pacific derived water but not nearby in Atlantic derived water. The two water masses are distinguished by their different nitrate to phosphate ratios. We show that methane production occurs if nitrate is depleted but phosphate is available as a P source. Apparently the low N:P ratio enhances the ability of bacteria to compete for phosphate while the phytoplankton metabolite dimethylsulfoniopropionate (DMSP) is utilized as a C source. This was verified by experimentally induced methane production in DMSP spiked Arctic sea water. Accordingly we propose that methylated compounds may serve as precursors for methane and thermodynamic calculations show that methylotrophic methanogenesis can provide energy in aerobic environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Authigenic carbonates associated with cold seeps provide valuable archives of changes in the long-term seepage activity. To investigate the role of shallow-buried hydrates on the seepage strength and fluid composition we analysed methane-derived carbonate precipitates from a high-flux hydrocarbon seepage area ("Batumi seep area") located on the south-eastern Black Sea slope in ca. 850 m. In a novel approach, we combined computerized X-ray tomography (CT) with mineralogical and isotope geochemical methods to get additional insights into the three-dimensional internal structure of the carbonate build-ups. X-ray diffractometry revealed the presence of two different authigenic carbonate phases, i.e. pure aragonitic rims associated with vital microbial mats and high-Mg calcite cementing the hemipelagic sediment. As indicated by the CT images, the initial sediment has been strongly deformed, first plastic then brittle, leading to brecciation of the progressively cemented sediment. The aragonitic rims on the other hand, represent a presumably recent carbonate growth phase since they cover the already deformed sediment. The stable oxygen isotope signature indicates that the high-Mg calcite cement incorporated pore water mixed with substantial hydrate water amounts. This points at a dominant role of high gas/fluid flux from decomposing gas hydrates leading to the deformation and cementation of the overlying sediment. In contrast, the aragonitic rims do not show an influence of 18O-enriched hydrate water. The differences in d18O between the presumably recent aragonite precipitates and the older high-Mg cements suggest that periods of hydrate dissociation and vigorous fluid discharge alternated with times of hydrate stability and moderate fluid flow. These results indicate that shallow-buried gas hydrates are prone to episodic decomposition with associated vigorous fluid flow. This might have a profound impact on the seafloor morphology resulting e.g. in the formation of carbonate pavements and pockmark-like structures but might also affect the local carbon cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extensive submarine cold-seep area was discovered on the northern shelf of South Georgia during R/V Polarstern cruise ANT-XXIX/4 in spring 2013. Hydroacoustic surveys documented the presence of 133 gas bubble emissions, which were restricted to glacially-formed fjords and troughs. Video-based sea floor observations confirmed the sea floor origin of the gas emissions and spatially related microbial mats. Effective methane transport from these emissions into the hydrosphere was proven by relative enrichments of dissolved methane in near-bottom waters. Stable carbon isotopic signatures pointed to a predominant microbial methane formation, presumably based on high organic matter sedimentation in this region. Although known from many continental margins in the world's oceans, this is the first report of an active area of methane seepage in the Southern Ocean. Our finding of substantial methane emission related to a trough and fjord system, a topographical setting that exists commonly in glacially-affected areas, opens up the possibility that methane seepage is a more widespread phenomenon in polar and sub-polar regions than previously thought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First videographic indication of an Antarctic cold seep ecosystem was recently obtained from the collapsed Larsen B ice shelf, western Weddell Sea (Domack et al., 2005). Within the framework of the R/V Polarstern expedition ANTXXIII-8, we revisited this area for geochemical, microbiological and further videographical examinations. During two dives with ROV Cherokee (MARUM, Bremen), several bivalve shell agglomerations of the seep-associated, chemosynthetic clam Calyptogena sp. were found in the trough of the Crane and Evans glacier. The absence of living clam specimens indicates that the flux of sulphide and hence the seepage activity is diminished at present. This impression was further substantiated by our geochemical observations. Concentrations of thermogenic methane were moderately elevated with 2 µM in surface sediments of a clam patch, increasing up to 9 µM at a sediment depth of about 1 m in the bottom sections of the sediment cores. This correlated with a moderate decrease in sulphate from about 28 mM at the surface down to 23.4 mM, an increase in sulphide to up to 1.43 mM and elevated rates of the anaerobic oxidation of methane (AOM) of up to 600 pmol cm**-3 d**-1 at about 1 m below the seafloor. Molecular analyses indicate that methanotrophic archaea related to ANME-3 are the most likely candidates mediating AOM in sediments of the Larsen B seep.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report and discuss molecular and isotopic properties of hydrate-bound gases from 55 samples and void gases from 494 samples collected during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge offshore Oregon. Gas hydrates appear to crystallize in sediments from two end-member gas sources (deep allochthonous and in situ) as mixtures of different proportions. In an area of high gas flux at the Southern Summit of the ridge (Sites 1248-1250), shallow (0-40 m below the seafloor [mbsf]) gas hydrates are composed of mainly allochthonous mixed microbial and thermogenic methane and a small portion of thermogenic C2+ gases, which migrated vertically and laterally from as deep as 2- to 2.5-km depths. In contrast, deep (50-105 mbsf) gas hydrates at the Southern Summit (Sites 1248 and 1250) and on the flanks of the ridge (Sites 1244-1247) crystallize mainly from microbial methane and ethane generated dominantly in situ. A small contribution of allochthonous gas may also be present at sites where geologic and tectonic settings favor focused vertical gas migration from greater depth (e.g., Sites 1244 and 1245). Non-hydrocarbon gases such as CO2 and H2S are not abundant in sampled hydrates. The new gas geochemical data are inconsistent with earlier models suggesting that seafloor gas hydrates at Hydrate Ridge formed from gas derived from decomposition of deeper and older gas hydrates. Gas hydrate formation at the Southern Summit is explained by a model in which gas migrated from deep sediments, and perhaps was trapped by a gas hydrate seal at the base of the gas hydrate stability zone (GHSZ). Free gas migrated into the GHSZ when the overpressure in gas column exceeded sealing capacity of overlaying sediments, and precipitated as gas hydrate mainly within shallow sediments. The mushroom-like 3D shape of gas hydrate accumulation at the summit is possibly defined by the gas diffusion aureole surrounding the main migration conduit, the decrease of gas solubility in shallow sediment, and refocusing of gas by carbonate and gas hydrate seals near the seafloor to the crest of the local anticline structure.