888 resultados para matlab push-off tests steel fiber reinforced concrete
Resumo:
Previous research into the behaviour of piled foundations in laterally-spreading soil deposits has concentrated on pile groups that carry small or negligible axial loads. This paper presents dynamic centrifuge test results for 2 x 2 pile groups with bending and geometric properties similar to real 0.5 m diameter tubular steel and solid circular reinforced-concrete field piles. Axial loads applied represented upper-bounds on typical working loads. The simultaneous scaling of the relevant properties controlling both lateral and axial behaviour allows comparisons to be drawn regarding the particular mechanisms of failure that would dominate for each type of pile. Flexible reinforced-concrete piles which tend to carry lower loads were found to be dominated by lateral effects, while steel piles, which are much stiffer and usually carry greater loads are dominated by settlement considerations. © 2006 Taylor & Francis Group.
Resumo:
A case study of the response of two buildings to the construction of a 12 m diameter tunnel excavated by conventional method, in Italy, is studied. The 12 m diameter tunnel was constructed carrying out reinforcement of the tunnel face and around the crown prior to excavation and installation of the temporary sprayed concrete lining and the permanent reinforced concrete lining. Reflective prisms, placed at first floor level around the perimeter of the building facades, allowed building settlements to be measured. Ground settlements between the two buildings were measured using BRE type settlement studs. Extensive protective measures were adopted to maintain stability of the tunnel excavation and to reduce ground movements. The number of horizontal jet grout columns installed into the tunnel face was reduced over the course of the project. Results from CPT tests indicate that the undrained shear strength at the tunnel axis is around 120 kPa. SPT and undrained unconsolidated (UU) triaxial tests indicate lower strengths of around 80 kPa, although this may be due to sample disturbance.
Resumo:
Previous research into the behaviour of piled foundations in laterally-spreading soil deposits has concentrated on pile groups that carry small or negligible axial loads. This paper presents dynamic centrifuge test results for 2×2 pile groups with bending and geometric properties similar to real 0.5m diameter tubular steel and solid circular reinforced-concrete field piles. Axial loads applied represented upper-bounds on typical working loads. The simultaneous scaling of the relevant properties controlling both lateral and axial behaviour allows comparisons to be drawn regarding the particular mechanisms of failure that would dominate for each type of pile. Flexible reinforced-concrete piles which tend to carry lower loads were found to be dominated by lateral effects, while steel piles, which are much stiffer and usually carry greater loads are dominated by settlement considerations. © 2006 Taylor & Francis Group, London.
Resumo:
First responders are in danger when they perform tasks in damaged buildings after earthquakes. Structural collapse due to the failure of critical load bearing structural members (e.g. columns) during a post-earthquake event such as an aftershock can make first responders victims, considering they are unable to assess the impact of the damage inflicted in load bearing members. The writers here propose a method that can provide first responders with a crude but quick estimate of the damage inflicted in load bearing members. Under the proposed method, critical structural members (reinforced concrete columns in this study) are identified from digital visual data and the damage superimposed on these structural members is detected with the help of Visual Pattern Recognition techniques. The correlation of the two (e.g. the position, orientation and size of a crack on the surface of a column) is used to query a case-based reasoning knowledge base, which contains apriori classified states of columns according to the damage inflicted on them. When query results indicate the column's damage state is severe, the method assumes that a structural collapse is likely and first responders are warned to evacuate.
Resumo:
The current procedures in post-earthquake safety and structural assessment are performed manually by a skilled triage team of structural engineers/certified inspectors. These procedures, and particularly the physical measurement of the damage properties, are time-consuming and qualitative in nature. This paper proposes a novel method that automatically detects spalled regions on the surface of reinforced concrete columns and measures their properties in image data. Spalling has been accepted as an important indicator of significant damage to structural elements during an earthquake. According to this method, the region of spalling is first isolated by way of a local entropy-based thresholding algorithm. Following this, the exposure of longitudinal reinforcement (depth of spalling into the column) and length of spalling along the column are measured using a novel global adaptive thresholding algorithm in conjunction with image processing methods in template matching and morphological operations. The method was tested on a database of damaged RC column images collected after the 2010 Haiti earthquake, and comparison of the results with manual measurements indicate the validity of the method.
Resumo:
The combination of light carbon fiber reinforced polymer (CFRP) composite materials with structurally efficient sandwich panel designs offers novel opportunities for ultralight structures. Here, pyramidal truss sandwich cores with relative densities ρ̄ in the range 1-10% have been manufactured from carbon fiber reinforced polymer laminates by employing a snap-fitting method. The measured quasi-static shear strength varied between 0.8 and 7.5 MPa. Two failure modes were observed: (i) Euler buckling of the struts and (ii) delamination failure of the laminates. Micro-buckling failure of the struts was not observed in the experiments reported here while Euler buckling and delamination failures occurred for the low (ρ̄≤1%) and high (ρ̄>1%) relative density cores, respectively. Analytical models for the collapse of the composite cores by these failure modes are presented. Good agreement between the measurements and predictions based on the Euler buckling and delamination failure of the struts is observed while the micro-buckling analysis over-predicts the measurements. The CFRP pyramidal cores investigated here have a similar mechanical performance to CFRP honeycombs. Thus, for a range of multi-functional applications that require an "open-celled" architecture (e.g. so that cooling fluid can pass through a sandwich core), the CFRP pyramidal cores offer an attractive alternative to honeycombs. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
A severe shortage of good quality donor cornea is now an international crisis in public health. Alternatives for donor tissue need to be urgently developed to meet the increasing demand for corneal transplantation. Hydrogels have been widely used as scaffolds for corneal tissue regeneration due to their large water content, similar to that of native tissue. However, these hydrogel scaffolds lack the fibrous structure that functions as a load-bearing component in the native tissue, resulting in poor mechanical performance. This work shows that mechanical properties of compliant hydrogels can be substantially enhanced with electrospun nanofiber reinforcement. Electrospun gelatin nanofibers were infiltrated with alginate hydrogels, yielding transparent fiber-reinforced hydrogels. Without prior crosslinking, electrospun gelatin nanofibers improved the tensile elastic modulus of the hydrogels from 78±19 kPa to 450±100 kPa. Stiffer hydrogels, with elastic modulus of 820±210 kPa, were obtained by crosslinking the gelatin fibers with carbodiimide hydrochloride in ethanol before the infiltration process, but at the expense of transparency. The developed fiber-reinforced hydrogels show great promise as mechanically robust scaffolds for corneal tissue engineering applications.
Resumo:
A severe shortage of good quality donor cornea is now an international crisis in public health. Alternatives for donor tissue need to be urgently developed to meet the increasing demand for corneal transplantation. Hydrogels have been widely used as scaffolds for corneal tissue regeneration due to their large water content, similar to that of native tissue. However, these hydrogel scaffolds lack the fibrous structure that functions as a load-bearing component in the native tissue, resulting in poor mechanical performance. This work shows that mechanical properties of compliant hydrogels can be substantially enhanced with electrospun nanofiber reinforcement. Electrospun gelatin nanofibers were infiltrated with alginate hydrogels, yielding transparent fiber-reinforced hydrogels. Without prior crosslinking, electrospun gelatin nanofibers improved the tensile elastic modulus of the hydrogels from 78±19. kPa to 450±100. kPa. Stiffer hydrogels, with elastic modulus of 820±210. kPa, were obtained by crosslinking the gelatin fibers with carbodiimide hydrochloride in ethanol before the infiltration process, but at the expense of transparency. The developed fiber-reinforced hydrogels show great promise as mechanically robust scaffolds for corneal tissue engineering applications. © 2013 Elsevier Ltd.
Resumo:
New materials are needed to replace degenerated intervertebral disc tissue and to provide longer-term solutions for chronic back-pain. Replacement tissue potentially could be engineered by seeding cells into a scaffold that mimics the architecture of natural tissue. Many natural tissues, including the nucleus pulposus (the central region of the intervertebral disc) consist of collagen nanofibers embedded in a gel-like matrix. Recently it was shown that electrospun micro- or nano-fiber structures of considerable thickness can be produced by collecting fibers in an ethanol bath. Here, randomly aligned polycaprolactone electrospun fiber structures up to 50 mm thick are backfilled with alginate hydrogels to form novel composite materials that mimic the fiber-reinforced structure of the nucleus pulposus. The composites are characterized using both indentation and tensile testing. The composites are mechanically robust, exhibiting substantial strain-to-failure. The method presented here provides a way to create large biomimetic scaffolds that more closely mimic the composite structure of natural tissue. © 2012 Materials Research Society.
Resumo:
Carbon fiber reinforced polymer (CFRP) composite sandwich panels with hybrid foam filled CFRP pyramidal lattice cores have been assembled from a carbon fiber braided net, 3D woven face sheets and various polymeric foams, and infused with an epoxy resin using a vacuum assisted resin transfer process. Sandwich panels with a fixed CFRP truss mass have been fabricated using a variety of closed cell polymer and syntactic foams, resulting in core densities ranging from 44-482kgm-3. The through thickness and in-plane shear modulus and strength of the cores increased with increasing foam density. The use of low compressive strength foams within the core was found to result in a significant reduction in the compressive strength contributed by the CFRP trusses. X-ray tomography led to the discovery that the trusses develop an elliptical cross-section shape during pressure assisted resin transfer. The ellipticity of the truss cross-sections increased, and the lattice contribution to the core strength decreased as the foam density was reduced. Micromechanical modeling was used to investigate the relationships between the mechanical properties and volume fractions of the core materials and truss topology of the hybrid core. The specific strength and moduli of the hybrid cores lay between those of the CFRP lattices and foams used to fabricate them. However, their volumetric and gravimetric energy absorptions significantly exceeded those of the materials from which they were fabricated. They compare favorably with other lightweight energy absorbing materials and structures. © 2013.
Resumo:
Excavation works in urban areas require a preliminary risk damage assessment. In historical cities, the prediction of building response to settlements is necessary to reduce the risk of damage of the architectural heritage. The current method used to predict the building damage due to ground deformations is the Limiting Tensile Strain Method (LTSM). This method is based on an uncoupled soil-structure analysis, in which the building is modelled as an elastic beam subject to imposed greenfield settlements and the induced tensile strains are compared with a limit value for the material. This approach neglects many factors which play an important rule in the response of the structure to tunneling induced settlements. In this paper, the possibility to apply a settlement risk assessment derived from the seismic vulnerability approach is considered. The parameters that influence the structural response to settlements can be defined through numerical coupled analyses which take into account the nonlinear behaviour of masonry and the soil-structure interaction.
Resumo:
In this paper, the transverse rocking mechanism of a barrel vaulted structure subjected to horizontal cyclic loads is analysed by means of experimental tests on full scale model and by means of non-linear FE analyses. The study is part of an ongoing experimental and theoretical research program, developed by the University of Brescia, concerning the seismic behaviour of ancient masonry buildings. The scope of the paper is to provide some evidence of the rocking mechanism experienced by barrel vaulted structures under horizontal loading. The understanding of the behaviour of these structural systems is necessary for their seismic vulnerability assessment, as well as for the correct design of possible strengthening techniques. A numeric FE model was validated through comparison with the experimental results and it was used to verify the efficiency of two common strengthening solutions: the technique of the overlaying reinforced concrete slab and the technique of the thin spandrel walls. Experimental and numeric results will be discussed in the paper.
Resumo:
The uniaxial tension experiments on glass-fiber-reinforced epoxy matrix composites reveal that the fragmentations of fibers display vertically aligned fracture, clustered fracture, coordinated fracture, and random fracture with the increase of inter-fiber spacing. The finite element analysis indicates that the fragmentations of fibers displaying different phenomena are due to the stress concentration as well as the inherent randomness of fiber defects, which is the dominant factor. The experimental results show that matrices adjacent to the fiber breakpoints all exhibit birefringent-whitening patterns for the composites with different interfacial adhesion strengths. The larger the extent of the interfacial debonding, the less the domain of the birefringent-whitening patterns. The numerical analysis indicates that the orientation of the matrix adjacent to a fiber breakpoint is caused by the interfacial shear stress, resulting in the birefringent-whitening patterns. The area of shear stress concentrations decides on the domain of the birefringent-whitening patterns.
Resumo:
Flexural fatigue tests were performed on an injection-moulded glass-fiber reinforced blend of polyphenylene ether ketone and polyphenylene sulfide composite using four-point bending at a series of fixed mean stress levels with varying stress amplitude. Attention was given to identifying the effects of mean stress and stress amplitude on the fatigue life and failure mechanisms. It was found that the fatigue life of the studied material decreased sharply with increasing stress amplitude at a constant mean stress level and also decreased at a fixed stress amplitude with increasing mean stress. However, analyses of the fatigue data and failure behaviour reveal that, for the studied material, fatigue failure mechanisms depend on the relative importance of mean stress and stress amplitude. At a mean stress level of 80% ultimate flexural strength, the failure results from accumulation of creep strain, while at mean stress levels of 40%, 50% and 60% ultimate flexural strength, the magnitude of stress amplitude influences the type of failure mechanism. As stress amplitude is reduced, the fatigue failure mechanism changes from matrix yielding dominated to crack growth dominated fracture.
Resumo:
The use of interlaminar fracture tests to measure the delamination resistance of unidirectional composite laminates is now widespread. However, because of the frequent occurrence of fiber bridging and multiple cracking during the tests, it leads to artificially high values of delamination resistance, which will not represent the behavior of the laminates. Initiation fracture from the crack starter, on the other hand, does not involve bridging, and should be more representative of the delamination resistance of the composite laminates. Since there is some uncertainty involved in determining the initiation value of delamination resistance in mode I tests in the literature, a power law of the form G(IC) = A.DELTA alpha(b) (where G(IC) is mode I interlaminar fracture toughness and DELTA alpha is delamination growth) is presented in this paper to determine initiation value of mode I interlaminar fracture toughness. It is found that initiation values of the mode I interlaminar fracture toughness, G(IC)(ini), can be defined as the G(IC) value at which 1 mm of delamination from the crack starter has occurred. Examples of initiation values determined by this method are given for both carbon fiber reinforced thermoplastic and thermosetting polymers.